OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4968–4974

Absorption line shift with temperature and pressure: impact on laser-diode-based H2O sensing at 1.393 µm

Richard Phelan, Michael Lynch, John F. Donegan, and Vincent Weldon  »View Author Affiliations


Applied Optics, Vol. 42, Issue 24, pp. 4968-4974 (2003)
http://dx.doi.org/10.1364/AO.42.004968


View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution absorption measurements of the H2O line in the v1 + v3 band at 1.3928 µm were made in the temperature range of 296–1100 K by use of an InGaAsP distributed-feedback laser diode operating at 1.39 µm. Spectral line shift, line strength, and N2 broadening on the water-vapor line and their impact on the accuracy of optical-absorption-based gas sensing have been investigated. The results obtained were compared with values obtained from the HITRAN database and values reported in the literature, facilitating H2O sensing in a nonstandard temperature and pressure environment.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: December 5, 2002
Revised Manuscript: May 19, 2003
Published: August 20, 2003

Citation
Richard Phelan, Michael Lynch, John F. Donegan, and Vincent Weldon, "Absorption line shift with temperature and pressure: impact on laser-diode-based H2O sensing at 1.393 µm," Appl. Opt. 42, 4968-4974 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-24-4968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997). [CrossRef]
  2. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  3. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994). [CrossRef] [PubMed]
  4. V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000). [CrossRef]
  5. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN96 molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 1–40 (2003). [CrossRef]
  6. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption theory and applications,” in Laser Remote Chemical Analysis, Vol. 94 of Chemical Analysis, J. D. Winefordner, I. M. Kolthoff, R. M. Measures, eds. (Wiley, New York, 1988), pp. 163–272.
  7. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961). [CrossRef]
  8. S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of He-, Ar-, and N2-broadened HF lineshapes in the first overtone band,” J. Mol. Spectrosc. 196, 70–76 (1999). [CrossRef] [PubMed]
  9. V. Malathy, D. Devi, C. Benner, M. Ann, H. Smith, L. R. Brown, M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transfer 76, 411–434 (2003). [CrossRef]
  10. R. H. Dicke, “The effects of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–305 (1953). [CrossRef]
  11. R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelley, “Collisional narrowing of infrared water-vapor transitions,” Appl. Phys. Lett. 21, 303–305 (1972). [CrossRef]
  12. V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325–329 (1997). [CrossRef]
  13. C. Delaye, J. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989). [CrossRef] [PubMed]
  14. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]
  15. H. Partridge, D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618 (1997). [CrossRef]
  16. B. Parvitte, V. Zeninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 493–505 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited