OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 25 — Sep. 1, 2003
  • pp: 4989–5008

Thermal Noise and Correlations in Photon Detection

Jonas Zmuidzinas  »View Author Affiliations


Applied Optics, Vol. 42, Issue 25, pp. 4989-5008 (2003)
http://dx.doi.org/10.1364/AO.42.004989


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The standard expressions for the noise that is due to photon fluctuations in thermal background radiation typically apply only for a single detector and are often strictly valid only for single-mode illumination. I describe a technique for rigorously calculating thermal photon noise, which allows for arbitrary numbers of optical inputs and detectors, multiple-mode illumination, and both internal and external noise sources. Several simple examples are given, and a general result is obtained for multimode detectors. The formalism uses scattering matrices, noise correlation matrices, and some fundamentals of quantum optics. The covariance matrix of the photon noise at the detector outputs is calculated and includes the Hanbury Brown and Twiss photon-bunching correlations. These correlations can be of crucial importance, and they explain why instruments such as autocorrelation spectrometers and pairwise-combined interferometers are competitive (and indeed common) at radio wavelengths but have a sensitivity disadvantage at optical wavelengths. The case of autocorrelation spectrometers is studied in detail.

© 2003 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.5290) Coherence and statistical optics : Photon statistics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(350.1270) Other areas of optics : Astronomy and astrophysics

Citation
Jonas Zmuidzinas, "Thermal Noise and Correlations in Photon Detection," Appl. Opt. 42, 4989-5008 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-25-4989


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
  2. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in 2 coherent beams of light,” Nature 177, 27–29 (1956).
  3. R. Nityananda, “Comparing optical and radio – quantum issues,” in Very High Resolution Angular Imaging: Proceedings of the International Astronomical Union, J. G. Robertson and W. J. Tango, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 11–18.
  4. M. Kamionkowski and A. H. Jaffe, “Detection of gravitational waves from inflation,” Int. J. Mod. Phys. A (Suppl. 1A) 16, 116–128 (2001).
  5. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
  6. S. Prasad, “Implications of light amplification for astronomical imaging,” J. Opt. Soc. Am. A 11, 2799–2803 (1994).
  7. J. Zmuidzinas, “Cramér-Rao sensitivity limits for astronomical instruments: implications for interferometer design,” J. Opt. Soc. Am. A 20, 218–233 (2003).
  8. J. M. W. Milatz and H. A. van der Velden, “Natural limit of measuring radiation with a bolometer,” Physica 10, 369–380 (1943).
  9. W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
  10. M. J. E. Golay, “Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector,” Rev. Sci. Instrum. 18, 347–356 (1947).
  11. R. C. Jones, “The ultimate sensitivity of radiation detectors,” J. Opt. Soc. Am. 37, 879–890 (1947).
  12. P. B. Felgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970–976 (1949).
  13. P. Felgett, R. C. Jones, and R. Q. Twiss, “Fluctuations in photon streams,” Nature 184, 967–969 (1959).
  14. C. W. McCombie, “Fluctuations in photon streams,” Nature 184, 969–970 (1959).
  15. K. M. vanVliet, “Noise limitations in solid-state photodetectors,” Appl. Opt. 6, 1145–1169 (1967).
  16. J. C. Mather, “Bolometer noise: nonequilibrium theory,” Appl. Opt. 21, 1125–1129 (1982).
  17. R. W. Boyd, “Photon bunching and the photon-noise-limited performance of infrared detectors,” Infrared Phys. 22, 157–162 (1982).
  18. J. M. Lamarre, “Photon noise in photometric instruments at far-infrared and submillimeter wavelengths,” Appl. Opt. 25, 870–876 (1986).
  19. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
  20. D. Benford, T. Hunter, and T. Phillips, “Noise equivalent power of background limited thermal detectors at submillimeter wavelengths,” Int. J. Infrared Millim. Waves 19, 931–938 (1998).
  21. G. A. Rebka and R. V. Pound, “Time-correlated photons,” Nature 180, 1035–1036 (1957).
  22. M. Harwit, “Measurement of thermal fluctuations in radiation,” Phys. Rev. 120, 1551–1556 (1960).
  23. B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16, 1012–1015 (1966).
  24. R. Hanbury Brown and R. Q. Twiss, “The question of correlation between photons in coherent light rays,” Nature 178, 1447–1448 (1956).
  25. E. M. Purcell, “The question of correlation between photons in coherent light rays,” Nature 178, 1449–1450 (1956).
  26. R. Hanbury Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in light: I. Basic theory: the correlation between photons in coherent beams of radiation,” Proc. R. Soc. London Ser. A 242, 300–324 (1957).
  27. P. Felgett, “The question of correlation between photons in coherent beams of light,” Nature 179, 956–957 (1957).
  28. R. Q. Twiss and R. Hanbury Brown, “The question of correlation between photons in coherent beams of light,” Nature 179, 1128–1129 (1957).
  29. R. M. Sillitto, “Correlation between events in photon detectors,” Nature 179, 1127–1128 (1957).
  30. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
  31. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
  32. V. V. Karavaev, “Output fluctuations of thermal radiation detectors,” Sov. Phys. JETP 22, 570–577 (1966).
  33. J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).
  34. H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32, 110–113 (1928).
  35. H. B. Callen and T. A. Welton, “Irreversibility and generalized noise,” Phys. Rev. 83, 34–40 (1951).
  36. H. Bosma, “On the theory of linear noisy systems,” Philips Res. Rep. Suppl. 10, 1–190 (1967).
  37. J. Murphy, S. Withington, and A. Egan, “Mode conversion at diffracting apertures in millimeter and submillimeter-wave optical-systems,” IEEE Trans. Microwave Theory Tech. 41, 1700–1702 (1993).
  38. J. Murphy and S. Withington, “Perturbation analysis of Gaussian-beam-mode scattering at off-axis ellipsoidal mirrors,” Infrared Phys. Technol. 37, 205–219 (1996).
  39. S. Withington and J. Murphy, “Modal analysis of partially coherent submillimeter-wave quasi-optical systems,” IEEE Trans. Antennas Propag. 46, 1651–1659 (1998).
  40. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1998).
  41. S. W. Wedge and D. B. Rutledge, “Noise waves and passive linear multiports,” IEEE Microwave Guid. Wave Lett. 1, 117–119 (1991).
  42. H. Haus, “Steady-state quantum analysis of linear systems,” Proc. IEEE 58, 1599–1611 (1970).
  43. B. Yurke and J. S. Denker, “Quantum network theory,” Phys. Rev. A 29, 1419–1437 (1984).
  44. H. A. Haus and Y. Yamamoto, “Quantum circuit theory of phase-sensitive linear systems,” IEEE J. Quantum Electron. QE-23, 212–221 (1987).
  45. J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of traveling-wave attenuators and amplifiers,” Phys. Rev. A 47, 3346–3359 (1993).
  46. E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846–853 (1994).
  47. R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in absorbing dielectrics,” Phys. Rev. A 52, 4823–4838 (1995).
  48. T. Gruner and D.-G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54, 1661–1677 (1996).
  49. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A 57, 2134–2145 (1998).
  50. C. W. J. Beenakker, “Thermal radiation and amplified spontaneous emission from a random medium,” Phys. Rev. Lett. 81, 1829–1832 (1998).
  51. L. Knöll, S. Scheel, E. Schmidt, D.-G. Welsch, and A. V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716–4726 (1999).
  52. S. Savasta, O. Di Stefano, and R. Girlanda, “Light quantization for arbitrary scattering systems,” Phys. Rev. A 65, 043801 (2002); see Eq. (4.28).
  53. C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
  54. K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd, “Continuum fields in quantum optics,” Phys. Rev. A 42, 4102–4114 (1990).
  55. R. Loudon, Quantum Theory of Light, 3rd ed. (Oxford U. Press, New York, 2000), Chap. 6.
  56. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
  57. P. L. Kelley and W. H. Kleiner, “Theory of electromagnetic field measurement and photoelectron counting,” Phys. Rev. 136, A316–A334 (1964).
  58. B. R. Mollow, “Quantum theory of field attenuation,” Phys. Rev. 168, 1896–1919 (1968).
  59. H. J. Kimble and L. Mandel, “Photoelectric detection of polychromatic light,” Phys. Rev. A 30, 844–850 (1984).
  60. R. S. Bondurant, “Response of ideal photodetectors to photon flux and/or energy flux,” Phys. Rev. A 32, 2797–2802 (1985).
  61. B. Yurke, “Wideband photon counting and homodyne detection,” Phys. Rev. A 32, 311–323 (1985).
  62. S. W. Wedge, “Computer-aided design of low noise microwave circuits,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1991).
  63. S. W. Wedge and D. B. Rutledge, “Wave techniques for noise modeling and measurement,” IEEE Trans. Microwave Theory Tech. 40, 2004–2012 (1992).
  64. S. W. Wedge and D. B. Rutledge, “Wave computations for microwave education,” IEEE Trans. Educ. 36, 127–131 (1993).
  65. J. Ward, F. Rice, G. Chattopadhyay, and J. Zmuidzinas, “SuperMix: a flexible software library for high-frequency circuit simulation, including SIS mixers and superconducting elements,” in Tenth International Symposium on Space Terahertz Technology: Symposium Proceedings (University of Virginia, Charlottesville, Va., 1999), pp. 268–281.
  66. See http://www.submm.caltech.edu/supermix.
  67. J. A. Tauber and N. R. Erickson, “A low-cost filterbank spectrometer for submm observations in radio astronomy,” Rev. Sci. Instrum. 62, 1288–1292 (1991).
  68. S. Padin, T. Clark, M. Ewing, R. Finch, R. Lawrence, J. Navarro, S. Scott, N. Scoville, C. Seelinger, and T. Seling, “A high-speed digital correlator for radio astronomy,” IEEE Trans. Instrum. Meas. 42, 793–798 (1993).
  69. M. Torres, “A frequency-agile hybrid spectral correlator for mm-wave radio interferometry,” Rev. Sci. Instrum. 65, 1537–1540 (1994).
  70. A. I. Harris and J. Zmuidzinas, “A wideband lag correlator for heterodyne spectroscopy of broad astronomical and atmospheric spectral lines,” Rev. Sci. Instrum. 72, 1531–1538 (2001).
  71. R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press Series on Electromagnetic Wave Theory (Wiley, New York, 2001), Chap. 8.
  72. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  73. A. Shumovsky, “Quantum multipole radiation,” Adv. Chem. Phys. 119, 395–490 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited