OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 25 — Sep. 1, 2003
  • pp: 5107–5111

Spatial Light Modulator–Controlled Alignment and Spinning of Birefringent Particles Optically Trapped in an Array

René L. Eriksen, Peter J. Rodrigo, Vincent R. Daria, and Jesper Glückstad  »View Author Affiliations

Applied Optics, Vol. 42, Issue 25, pp. 5107-5111 (2003)

View Full Text Article

Acrobat PDF (826 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of a phase-only liquid-crystal spatial light modulator (SLM) for polarization-controlled rotation and alignment of an array of optically trapped birefringent particles. A collimated beam incident upon a two-dimensional lenslet array yields multiple foci, scaled to produce optical gradient traps with efficient three-dimensional trapping potentials. The state of polarization of each trapping beam is encoded by the SLM, which acts as a matrix of wave plates with computer-controlled phase retardations. Control of the rotation frequency and alignment direction of the particles is achieved by the transfer of tunable photon spin angular momentum.

© 2003 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators
(260.1440) Physical optics : Birefringence

René L. Eriksen, Peter J. Rodrigo, Vincent R. Daria, and Jesper Glückstad, "Spatial Light Modulator–Controlled Alignment and Spinning of Birefringent Particles Optically Trapped in an Array," Appl. Opt. 42, 5107-5111 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, J. M. Dziedic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  2. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
  3. D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, and K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
  4. E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
  5. M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
  6. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
  8. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
  9. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
  10. S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
  11. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun. 187, 325–336 (2001).
  12. Y. Hayasaki, S. Sumi, K. Mutoh, and S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, and C. Nam, eds., Proc. SPIE 2778, 229–230 (1996).
  13. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
  14. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002), http://www.opticsexpress.org.
  15. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002), http://www.opticsexpress.com.
  16. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
  17. Y. Ogura, K. Kagawa, and J. Tanida, “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,” Appl. Opt. 40, 5430–5435 (2001).
  18. R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, and S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
  19. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, “Shack-Hartmann multiple beam optical tweezers,” Opt. Express 11, 208–214 (2003), http://www.opticsexpress.org.
  20. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
  21. Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, and M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, and R. L. Sutherland, eds. Proc. SPIE 3951, 158–165 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited