OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 25 — Sep. 1, 2003
  • pp: 5149–5157

Osmium atomic-oxygen protection by an iridium overcoat for increased extreme-ultraviolet grating efficiency

Richelieu Hemphill, Mark Hurwitz, and Maria G. Pelizzo  »View Author Affiliations

Applied Optics, Vol. 42, Issue 25, pp. 5149-5157 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The deposition of a 30-Å-thick layer of iridium upon a 250-Å-thick osmium reflective layer for use as a diffraction grating in the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite observatory has provided sufficient protection from an expected maximum orbital atomic-oxygen fluence of 1 × 1016 atoms/cm2. The grating parameters of groove constant and depth, efficiencies of zeroth-order, first and second inside orders, and first inside-order efficiency positional uniformity as well as stray light near the first inside order of the Ir-Os-coated grating were measured within a CHIPS spectral bandpass of 90–260 Å. Stray-light measurements were also made near the first inside spectral order at 304, 584, and 1216 Å. The results make the Ir-Os coat an acceptable grating reflectivity layer for CHIPS and other spaceborne extreme-ultraviolet spectrometers that employ grazing-incidence reflection optics.

© 2003 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(290.5820) Scattering : Scattering measurements
(310.1620) Thin films : Interference coatings
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: September 30, 2002
Revised Manuscript: May 15, 2003
Published: September 1, 2003

Richelieu Hemphill, Mark Hurwitz, and Maria G. Pelizzo, "Osmium atomic-oxygen protection by an iridium overcoat for increased extreme-ultraviolet grating efficiency," Appl. Opt. 42, 5149-5157 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hurwitz, R. Davis, S. Dawson, P. Dobson, W. Donakowski, A. Friedman, G. Gaines, J. Edelstein, R. Hemphill, J. Hoberman, J. Janicik, P. Jelinsky, M. Lampton, W. Marchant, M. Marckwordt, J. Mirczak, T. Sasseen, M. Sholl, O. Siegmund, M. Sirk, D. Stone, S. Sulack, E. Taylor, M. Veno, J. Woff, “Status of the cosmic hot interstellar plasma spectrometer (CHIPS) university-class explorer mission,” in Future EUV/FUV and Visible Space Astrophysics Missions and Instrumentation, J. Blades, O. Siegmund, eds., Proc. SPIE4854, 319–328 (2002). [CrossRef]
  2. M. Sholl, W. Donakowski, M. Sirk, T. Clauss, M. Lampton, J. Edelstein, M. Hurwitz, “Optomechanical design of the cosmic hot interstellar plasma spectrometer (CHIPS),” in Future EUV/FUV and Visible Space Astrophysics Missions and Instrumentation, J. Blades, O. Siegmund, eds., Proc. SPIE4854, 467–478 (2002). [CrossRef]
  3. M. R. Torr, “Osmium coated diffraction grating in the Space Shuttle environment: performance,” Appl. Opt. 24, 2959–2961 (1985). [CrossRef] [PubMed]
  4. P. N. Peters, J. C. Gregory, J. T. Swann, “Effects on optical systems from interactions with oxygen atoms in low earth orbits,” Appl. Opt. 25, 1290–1298 (1986). [CrossRef]
  5. D. L. Windt, “IMD—software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1978). [CrossRef]
  6. P. N. Peters, R. C. Linton, E. R. Miller, “Results of apparent atomic oxygen reactions on Ag, C and Os exposed during the shuttle STS-4 orbits,” Geophys. Res. Lett. 10, 569–571 (1983). [CrossRef]
  7. H. Herzig, A. R. Toft, C. M. Fleetwood, “Long-duration orbital effects on optical coating materials,” Appl. Opt. 32, 1798–1804 (1993). [CrossRef] [PubMed]
  8. T. R. Gull, H. Herzig, J. F. Osantowski, A. R. Toft, “Low earth orbit environmental effects on osmium and related optical thin-film coatings,” Appl. Opt. 24, 2660–2665 (1985). [CrossRef] [PubMed]
  9. D. E. Graessle, A. J. Burek, J. J. Fitch, B. Harris, D. A. Schwartz, R. L. Blake, “Optical constants from synchrotron reflectance measurements of AXAF witness mirrors, 2–12 keV,” in Grazing Incidence and Multilayer X-Ray Optical Systems, R. Hoover, A. Walker, eds., Proc. SPIE3113, 52–64 (1997). [CrossRef]
  10. B. Harris, A. J. Burek, J. J. Fitch, D. E. Graessle, D. A. Schwartz, R. L. Blake, E. M. Gullikson, “Determination of optical constants for AXAF mirrors from 0.05–1.0 keV through reflectance measurements,” in Grazing Incidence and Multilayer X-Ray Optical Systems, R. Hoover, A. Walker, eds., Proc. SPIE3113, 40–51 (1997). [CrossRef]
  11. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993), http://cindy.lbl.gov/optical_constants . [CrossRef]
  12. C. S. Fang, W. S. Tse, C. E. Maloney, “Re/Ir/W and Os/Ir/W alloy coatings on impregnated tungsten cathodes,” Appl. Surf. Sci. 33/34, 1189–1199 (1988). [CrossRef]
  13. Y.-L. He, J.-K. Zuo, G.-C. Wang, J. J. Low, “Diffusion of Rh overlayers grown on a Pt(110) surface,” Surf. Sci. 255, 269–279 (1991). [CrossRef]
  14. H. Wu, T. T. Tsong, “Overlayer formation and inter-diffusion of Rh atoms at the Pt(100) surface,” Surf. Sci. 318, 358–362 (1994). [CrossRef]
  15. D. Brion, J. C. Tonnerre, A. Shroff, “Electron emission and surface composition of osmium and osmium-tungsten coated dispenser cathodes,” Appl. Surf. Sci. 20, 429–456 (1985). [CrossRef]
  16. A. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991), http://nssdc.gsfc.nasa.gov/space/model/models/misi.htm . [CrossRef]
  17. R. Hemphill, M. Pelizzo, M. Hurwitz, “Extreme-ultraviolet calibration of thin-film Zr filters for the Cosmic Hot Interstellar Plasma Spectrometer,” Appl. Opt. 41, 4680–4685 (2002). [CrossRef] [PubMed]
  18. J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, W. F. Steele, “Calibration and standards beamline 6.3.2 at the advanced light source,” Rev. Sci. Instrum. 67, 1–5 (1996). [CrossRef]
  19. J. H. Underwood, E. M. Gullikson, M. Koike, S. Mrowka, “Experimental comparison of mechanically ruled and holographically recorded plane varied-line spacing gratings,” in Gratings and Grating Monochromators for Synchrotron Radiation, W. McKinney, C. Palmer, eds., Proc. SPIE3150, 40–46 (1997). [CrossRef]
  20. Hyperfine Inc., 4946 North 63rd Street, Boulder, Colo. 80304.
  21. J. J. López-Moreno, C. Morales, J. F. Gómez, J. Trapero, S. Bowyer, J. Edelstein, E. Korpela, M. Lampton, “Spectrum of the extreme ultraviolet nightglow as measured by EURD,” in Science with Minisat 01, A. Gimenez, ed. (Kluwer Scientific, Dordrecht, The Netherlands, 2001), pp. 211–217. [CrossRef]
  22. S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400 Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984). [CrossRef]
  23. S. Chakrabarti, F. Paresce, S. Bowyer, R. Kimble, “The extreme ultraviolet day airglow,” J. Geophys. Res. 88, 4898–4904 (1983). [CrossRef]
  24. M. Hurwitz, S. Bowyer, J. Edelstein, T. Harada, T. Kita, “EUV efficiency of a 6000-mm-1 diffraction grating,” Appl. Opt. 29, 1866–1867 (1990). [CrossRef] [PubMed]
  25. J. Edelstein, M. C. Hettrick, S. Mrowka, P. Jelinsky, C. Martin, “Extreme UV measurements of a varied line-space Hitachi reflection grating: efficiency and scattering,” Appl. Opt. 23, 3267–3270 (1984). [CrossRef]
  26. W. R. McKinney, D. Mossessian, E. Gullikson, P. Heimann, “Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source,” Rev. Sci. Instrum. 66, 2160–2163 (1995). [CrossRef]
  27. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).
  28. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985). [CrossRef] [PubMed]
  29. M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited