OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 25 — Sep. 1, 2003
  • pp: 5158–5166

Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography

Daqing Piao and Quing Zhu  »View Author Affiliations

Applied Optics, Vol. 42, Issue 25, pp. 5158-5166 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently we introduced a novel procedure that estimates Doppler angle and flow velocity simultaneously by combining Doppler-shift and Doppler-bandwidth measurements with a conventional single-beam optical Doppler tomography device. Here we validate this method experimentally with two Intralipid flow setups that correspond to fixed Doppler angle and fixed flow speed. One set of data has a fixed flow speed of 53.6 mm/s with a Doppler angle that changes from 56° to 90°; the other has a fixed Doppler angle of 80° with flow speed that changes from 18.5 to 141.9 mm/s. As obtained with the method introduced here, the Doppler-angle estimation accuracies of the two sets are 97.6% and 98.2%, respectively, and the estimation accuracies of flow speeds of the two sets are 94.3% and 90.4%, respectively.

© 2003 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

Original Manuscript: December 25, 2002
Revised Manuscript: June 3, 2003
Published: September 1, 2003

Daqing Piao and Quing Zhu, "Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography," Appl. Opt. 42, 5158-5166 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980). [CrossRef]
  2. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002). [CrossRef]
  3. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  5. Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999). [CrossRef]
  6. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24, 1584–1586 (1999). [CrossRef]
  7. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  8. Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000). [CrossRef]
  9. D. Piao, L. Otis, Q. Zhu, “Doppler angle and flow velocity mapping by combining Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120–1122 (2003). [CrossRef] [PubMed]
  10. D. Piao, L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002). [CrossRef] [PubMed]
  11. C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985). [CrossRef]
  12. J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000). [CrossRef]
  13. C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).
  14. B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988). [CrossRef] [PubMed]
  15. P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001). [CrossRef] [PubMed]
  16. T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001). [CrossRef] [PubMed]
  17. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, A. J. Welch, J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998). [CrossRef]
  18. S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited