OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 25 — Sep. 1, 2003
  • pp: 5173–5180

Experimental and Numerical Analysis of Short-Pulse Laser Interaction with Tissue Phantoms Containing Inhomogeneities

Champak Das, Ashish Trivedi, Kunal Mitra, and Tuan Vo-Dinh  »View Author Affiliations


Applied Optics, Vol. 42, Issue 25, pp. 5173-5180 (2003)
http://dx.doi.org/10.1364/AO.42.005173


View Full Text Article

Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The objective is to perform an experimental and numerical study to analyze short-pulse laser propagation through tissue phantoms without and with inhomogeneities embedded in them. For a short-pulse laser the observed optical signal has a distinct temporal shape, and the shape is a function of the medium properties. The scattered temporal transmitted and reflected optical signals are measured experimentally with a streak camera for tissue phantoms irradiated with a short-pulse laser source. A parametric study involving different scattering and absorption coefficients of tissue phantoms and inhomogeneities, as well as the detector positions and orientations, is performed. The temporal and spatial profiles of the scattered optical signals are compared with the numerical modeling results obtained by solving the transient radiative transport equation by using the discrete ordinates technique.

© 2003 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6920) Medical optics and biotechnology : Time-resolved imaging

Citation
Champak Das, Ashish Trivedi, Kunal Mitra, and Tuan Vo-Dinh, "Experimental and Numerical Analysis of Short-Pulse Laser Interaction with Tissue Phantoms Containing Inhomogeneities," Appl. Opt. 42, 5173-5180 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-25-5173


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Kumar and K. Mitra, “Microscale aspects of thermal radiation transport and laser applications,” Adv. Heat Transfer 33, 187–294 (1999).
  2. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
  3. Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” Annu. Rev. Fluid Mech. Heat Transfer 6, 1–59 (1995).
  4. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
  5. G. J. R. Spooner, T. Juhasz, R. Imola, G. Djotyan, C. Horvath, Z. Sacks, G. Marre, D. Miller, A. R. Williams, and R. Kurtz, “New developments in ophthalmic applications of ultrafast lasers source,” in Commercial and Biomedical Applications of Ultrafast Lasers II, J. Neev and M. K. Reed, eds., Proc. SPIE 3934, 62–72 (2000).
  6. J. E. Marion and B. M. Kim, “Medical applications of ultrashort-pulse lasers,” in Commercial and Biomedical Applications of Ultrafast Lasers, M. K. Reed and J. Neev, eds., Proc. SPIE 3616, 42–50 (1999).
  7. R. M. Kurtz, V. Elner, X. Liu, T. Juhasz, F. H. Loesel, C. Horvath, M. H. Niemz, and F. Noack, “Plasma-mediated ablation of biological tissue with picosecond and femtosecond laser pulses,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE 2975, 192–200 (1997).
  8. F. H. Loesel, A. C. Tien, S. Backus, H. Kapteyn, R. M. Murane, S. Sayegh, and T. Juhasz, “Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue,” in Thermal Therapy, Laser Welding, and Tissue Interaction, S. G. Bown, G. P. Delacretaz, G. Godlewski, G. J. Mueller, R. Pini, H. Reidenbach, R. W. Steiner, L. O. Svassand, and K. Tranberg, eds., Proc. SPIE 3565, 116–123 (1999).
  9. K. Mitra and J. H. Churnside, “Transient radiative transfer equation applied to oceanographic lidar,” Appl. Opt. 38, 889–895 (1999).
  10. R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38, 2384–2397 (1999).
  11. M. Gower, “Excimer laser microfabrication and micromachining,” in First International Symposium on Laser Precision Microfabrication, I. Miyamoto, K. Sugioka, and T. W. Sigmon, eds., Proc. SPIE 4088, 124–131 (2000).
  12. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
  13. E. C. Hillman, J. C. Bebden, M. Schweiger, H. Dehghani, F. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Timer resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
  14. O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiol. 38, 185–189 (1997).
  15. T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, Boca Raton, Fla., 2003).
  16. D. A. Boas, and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
  17. B. J. Tromberg, L. O. Svaasand, T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–617 (1993).
  18. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
  19. S. J. Norton and T. Vo-Dinh, “Diffraction tomographic imaging with photon density waves: an explicit solution,” J. Opt. Soc. Am. A 15, 2670–2677 (1998).
  20. K. Mitra and S. Kumar, “Development and comparison of models for light-pulse transport through scattering-absorbing media,” Appl. Opt. 38, 188–196 (1999).
  21. D. J. Hall, J. C. Hebden, and D. T. Deply, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt. 36, 7270–7276 (1997).
  22. A. H. Hielscher, A. Klose, D. Catarious, and K. M. Hanson, “Tomographic imaging of biological tissue by time resolved, model based, iterative image reconstruction,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, eds. Vol. 21 of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1998), pp. 125–127.
  23. S. R. Arridge, “The forward and inverse problem in time resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, ed. (SPIE Press, Bellingham, 1993).
  24. J. R. Singer, F. A. Grunbaum, P. Kohn, and J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–991 (1990).
  25. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
  26. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  27. J. C. Hebden, “Evaluating the spatial resolution performance of time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
  28. M. Q. Brewester and Y. Yamada, “Optical properties of thick turbid media from picosecond time-resolved light scattering measurement,” Int. J. Heat Mass Transfer 8, 2569–2581 (1995).
  29. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
  30. M. Sakami, K. Mitra, and T. Vo-Dinh, “Analysis of short-pulse laser photon transport through tissues for optical tomography,” Opt. Lett. 27, 336–338 (2002).
  31. M. Sakami, K. Mitra, and P. Hsu, “Transient radiative transfer in anisotropically scattering media using monotonicity-preserving schemes,” International Mechanical Engineering Congress and Exposition 366–1, 135–143 (2000).
  32. S. Kumar, K. Mitra, and Y. Yamada, “Hyperbolic damped-wave models for transient light-pulse propagation in scattering media,” Appl. Opt. 35, 3372–3378 (1996).
  33. K. Mitra, M. S. Lai, and S. Kumar, “Transient radiation transport in participating media within a rectangular enclosure,” J. Thermophys. Heat Transfer 11, 409–414 (1997).
  34. Z. M. Tan and P. F. Hsu, “An integral formulation of transient radiative transfer,” ASME J. Heat Transfer 123, 466–475 (2001).
  35. C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43, 2009–2020 (2000).
  36. A. H. Gandbakche, R. Nossal, and R. F. Bonner, “Scaling relationships for theories of anisotropic random walks applied to tissue optics,” Appl. Opt. 32, 504–516 (1993).
  37. A. Sawetprawichkul, P. F. Hsu, K. Mitra, and M. Sakami, “A Monte Carlo study of the transient radiative transfer within the one-dimensional multi-layered slab,” International Mechanical Engineering Congress and Symposium, Orlando (Florida) 366–1, 145–153 (2000).
  38. M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light-pulse transport through two-dimensional scattering-absorbing media,” J. Quant. Spectrosc. Radiat. Transfer 73, 169–179 (2002).
  39. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 2003).
  40. G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5, 506–517 (1968).
  41. P. Colella and P. R. Woodward, “The piecewise parabolic method for gas-dynamical simulations,” J. Comput. Phys. 54, 174–201 (1984).
  42. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited