OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 26 — Sep. 10, 2003
  • pp: 5233–5250

Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

Luc Gilles, Brent L. Ellerbroek, and Curtis R. Vogel  »View Author Affiliations


Applied Optics, Vol. 42, Issue 26, pp. 5233-5250 (2003)
http://dx.doi.org/10.1364/AO.42.005233


View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiconjugate adaptive optics (MCAO) systems with 104–105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4–5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

© 2003 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

History
Original Manuscript: February 17, 2003
Revised Manuscript: June 9, 2003
Published: September 10, 2003

Citation
Luc Gilles, Brent L. Ellerbroek, and Curtis R. Vogel, "Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics," Appl. Opt. 42, 5233-5250 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-26-5233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, Cambridge, UK, 1998).
  3. F. J. Roddier, Adaptive Optics for Astronomy (Cambridge University, Cambridge, UK, 1999).
  4. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982). [CrossRef]
  5. G. A. Tyler, “Rapid evaluation of d0: the effective diameter of a laser-guide-star adaptive-optics system,” J. Opt. Soc. Am. A 11, 325–338 (1994). [CrossRef]
  6. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the European Southern Observatory Conference and Workshop on Very Large Telescopes and their Instrumentation, M. H. Ulrich, ed., 30, 693–703 (1998).
  7. R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinovich, ed., Proc. SPIE4007, 1076–1087 (2000). [CrossRef]
  8. R. Ragazzoni, E. Diolaiti, J. Farinato, E. Fedrigo, E. Marchetti, M. Tordi, D. Kirkman, “Multiple field of view layer-oriented adaptive optics,” Astron. Astrophys. 396, 731–744 (2002). [CrossRef]
  9. M. Tordi, R. Ragazzoni, E. Diolaiti, “Simulation of a Layer Oriented MCAO system,” in Beyond Conventional Adaptive Optics, Proceeding ESO (2001), http://lenin.pd.astro.it/venice2001/proceedings/ .
  10. A. A. Tokovinin, “Maximum separation between guide stars in atmospheric tomography,” in Beyond Conventional Adaptive Optics, Proceeding ESO (2001), http://lenin.pd.astro.it/venice2001/proceedings/ .
  11. B. L. Ellerbroek, “First-order performance evaluation of adaptive optics systems for atmospheric turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994). [CrossRef]
  12. B. L. Ellerbroek, F. J. Rigaut, “Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1088–1099 (2000). [CrossRef]
  13. T. Fusco, J. M. Conan, V. Michau, L. M. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Poggemann, L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999). [CrossRef]
  14. T. Fusco, J. M. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001). [CrossRef]
  15. D. C. Johnston, B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994). [CrossRef]
  16. R. Flicker, B. L. Ellerbroek, F. J. Rigaut, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8m telescope,” in Propagation and Imaging through the Atmosphere III, M. C. Poggemann, L. R. Bissonnette, eds., Proc. SPIE4007, 1032–1043 (2000).
  17. B. L. Ellerbroek, “A wave optics propagation code for multiconjugate adaptive optics,” in Proceedings of Beyond Conventional Adaptive Optics (European Southern Observatory, Venice, Italy, 2001), pp. 7–10.
  18. B. L. Ellerbroek, “Efficient computation of minimum variance wave-front reconstructors using sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803–1816 (2002). [CrossRef]
  19. L. Gilles, C. R. Vogel, B. L. Ellerbroek, “A multigrid preconditioned conjugate gradient method for large scale wave front reconstruction,” J. Opt. Soc. Am. A 19, 1817–1822 (2002). [CrossRef]
  20. L. Gilles, “Order N sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Opt. Lett. (to be published).
  21. L. A. Poyneer, D. T. Gavel, J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems using the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2002). [CrossRef]
  22. L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier-transform wave-front reconstruction at the Palomar Observatory,” Opt. Lett. 28, 798–800 (2003). [CrossRef] [PubMed]
  23. B. L. Ellerbroek, L. Gilles, C. R. Vogel, “Computationally efficient wavefront reconstructor for simulation of multiconjugate adaptive optics on Giant Telescopes,” in Adaptive Optics System Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 989–1000 (2002). [CrossRef]
  24. L. Gilles, B. L. Ellerbroek, C. R. Vogel, “Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics,” in Adaptive Optical System Technologies II, P. L. Wizinowich, D. Bonnaccini, eds., Proc. SPIE4839, 125–133 (2002).
  25. E. James, C. Boyer, R. C. Buchroeder, B. L. Ellerbroek, M. R. Hunten, “Design considerations of the AO module for the Gemini South multiconjugate adaptive optics system,” in Adaptive Optical Systems Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 67–80 (2003). [CrossRef]
  26. J. Vernin, A. Agabi, R. Avila, M. Azouit, R. Conan, F. Martin, E. Masciadri, L. Sanchez, A. Ziad, “1998 Gemini site testing campaign: Cerro Pachon and Cerro Tololo,” Gemini report rpt-ao-g0094 (Gemini Observatory, Hilo, Hawaii, 2000), http://www.gemini.edu/sciops/instruments/adaptiveOptics/AOarchive.html .
  27. O. Axelsson, V. A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation, (SIAM, Philadelphia, Pa., 2001). [CrossRef]
  28. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. A 67, 370–375 (1977). [CrossRef]
  29. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. A 67, 393–395 (1977). [CrossRef]
  30. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (PWS-Kent, Boston, Mass., 2003). [CrossRef]
  31. U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, (Academic, San Diego, Calif., 2001).
  32. E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited