OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 26 — Sep. 10, 2003
  • pp: 5263–5273

Evaluation of some GRIN fiber parameters and the associated fraction mode loss due to mechanically induced optical anisotropy

Fouad El-Diasty  »View Author Affiliations


Applied Optics, Vol. 42, Issue 26, pp. 5263-5273 (2003)
http://dx.doi.org/10.1364/AO.42.005263


View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Some of the optical parameters of the bent multimode graded-index (GRIN) optical fiber in terms of indices of refraction, where the bending stresses broke the radial symmetry, are evaluated by use of multiple-beam Fizeau fringes. The variation of the index difference between the cladding index and core index in both the compression and tensile fiber regions is measured. The accuracy of measuring the index is ±1 × 10-4. The spatial resolution of the method is 1.39 μm. Evaluation of the acceptance angle, the numerical aperture, and the V number profiles of the bent fiber from the interference pattern at both sides of the bent fiber are presented. The fraction of the mode number lost has been evaluated. The method was used to study the influence of compression on diminishing the index difference that leads to a dissipation of energy and a considerable mode loss. It is obvious from the experimental data that the change of the index difference due to bending strongly affects the fraction of propagating mode number, especially at the small radii of curvature. Ignoring the variation of the index difference we evaluating the number of propagated modes number leads to an insufficient determination of the mode loss. It subsequently leads to an incorrect determination of the mode dispersion and the interface loss in bent GRIN fibers. The study confirms that the deviation of the guide axis from straightness with the radius of curvature of less than 1 cm could lead to a significant fraction mode loss.

© 2003 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: November 17, 2002
Revised Manuscript: May 26, 2003
Published: September 10, 2003

Citation
Fouad El-Diasty, "Evaluation of some GRIN fiber parameters and the associated fraction mode loss due to mechanically induced optical anisotropy," Appl. Opt. 42, 5263-5273 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-26-5263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. DeCusatis, “Optical data communication: fundamentals and future directions,” Opt. Eng. 37, 3082–3099 (1998). [CrossRef]
  2. T. Ishigure, M. Sato, E. Nihei, Y. Koike, “High-bandwidth and high-thermal stability graded-index polymer optical fiber,” in Polymer Photonic Devices, B. Kippelen, D. D. Bradley, eds., Proc. SPIE, 328166–74 (1998). [CrossRef]
  3. R. King, R. Michalzik, “VCSEL arrays for fiber optical interconnections,” Annual Report1999, Department of Optoelectronics, University of Ulm.
  4. M. A. El-Sherif, “On-fiber sensor and modulator,” IEEE Trans. Instrum. Meas. 38, 595–598 (1989). [CrossRef]
  5. Th. Beck, N. Reng, H. Weber, “Optical fibers for material processing lasers,” Opt. Laser Eng. 34, 255–272 (2000). [CrossRef]
  6. B. Culshaw, Optical Fiber Sensing and Signal Processing,1st ed. (Peregrinus, London, 1984).
  7. R. L. Lehman, “Developments in fiber optic sensor design,” in Proceedings of the 40th Electronic Components and Technology Conference, (Las Vegas, Nevada, 1990) pp. 60–63. [CrossRef]
  8. F. S. Yu, M. Wen, S. Yin, C. M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle field,” Appl. Opt. 32, 4685–4891 (1993). [CrossRef] [PubMed]
  9. S. Yin, P. Purwosumarto, “Application of fiber specklergram sensor to fine angular alignment,” Opt. Commun. 170, 15–19 (1999). [CrossRef]
  10. V. V. Steblina, “Cladding mode degeneracy in bent W-fibers beyond cutoff,” Opt. Commun. 156, 271–278 (1998). [CrossRef]
  11. H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–780 (1980). [CrossRef]
  12. Y. Yen, R. Ulrich, “Birefringent optical fibers in single-mode fiber,” Opt. Lett. 6, 278–280 (1981). [CrossRef] [PubMed]
  13. G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Design and performance of tuned fiber coil isolators,” J. Lightwave Technol. LT-2, 56–60 (1984). [CrossRef]
  14. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311–320 (1976). [CrossRef]
  15. R. Ulrich, S. C. Rashleigh, W. Eichoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980). [CrossRef] [PubMed]
  16. J. E. Hefferon, “Calculating bend and twist stress in optical fibers,” in Components for Fiber Optic Applications, V. J. Tekippe, ed., Proc. SPIE, 722, 108–110 (1986). [CrossRef]
  17. H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. LT-2, 617–622 (1984). [CrossRef]
  18. K. Nagano, S. Kawakami, S. Nishida, “Change of the refractive index in an optucal fiber due to external forces,” Appl. Opt. 17, 2080–2085 (1978). [CrossRef] [PubMed]
  19. K. Tsujikawa, K. Arakawa, K. Yoshida, “Reflection of light caused by sharp bends in optical fiber,” IEICE Trans. Electron. E82-C, 2105–2107 (1999).
  20. L. S. Srubshchik, “Strength measurement of optical fibers by bending,” in Optical Wireless Communications, E. J. Kovovaas, ed., Proc. SPIE3532, 114–121 (1998). [CrossRef]
  21. M. J. Gander, E. A. C. Galliot, R. McBride, J. D. C. Jones, “Bend measurement using multicore optical fiber,” in proceeding of the 12th International Conference on Optical Fiber Sensors, (Williamsburg, Virginia, 1997), p. 166–169.
  22. S. V. Chernikov, F. Koch, J. R. Taylor, L. Gruner-Nielsen, “Measurement of the effect of bending on dispersion in dispersion-compensating fibers,” in Proceeding of OFC’98, Optical Fiber Communication Conference and Exhibition, (Optical Society of American Washington, D.C., 1998), p. 23–24.
  23. Q. Zhang, D. A. Brown, I. J. Reinhart, T. F. Morse, “Linearly and nonlinearly chirped Bragg gratings fabricated on curved fibers,” Opt. Lett. 20, 1122–1124 (1995). [CrossRef] [PubMed]
  24. B. H. Lee, J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23, 1624–1626 (1998). [CrossRef]
  25. J. Rathji, M. Kristensen, J. Hubner, “Effect of core concentricity error on bend direction asymmetry for long-period fiber gratings,” Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, (Optical Society of America, Washington D.C.1999), p. 283–285.
  26. T. Mizunami, T. Niiho, T. V. Djambova, “Multimode fiber Bragg gratings for fiber-optic bending sensors,” 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds. Proc. SPIE3746, 216–219 (1999).
  27. I. Verrier, J. P. Goure, “Effects of bending on multimode step-index fibers,” Opt. Lett. 15, 15–17 (1990). [CrossRef] [PubMed]
  28. J. H. Hannay, “Mode coupling in an elastically deformed optical fibre,” Electron. Lett. 12, 173–174 (1976). [CrossRef]
  29. W. A. Gambling, D. N. Payne, H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975). [CrossRef] [PubMed]
  30. S. Kawakami, “Mode conversion losses of randomly bent, singly and doubly clad waveguides for single mode transmission,” Appl. Opt. 15, 2778–2784 (1976). [CrossRef] [PubMed]
  31. M. Ikeda, Y. Murakami, K. Kitayama, “Mode scrambler for optical fibers,” Appl. Opt. 16, 1045–1049 (1977). [PubMed]
  32. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972). [CrossRef] [PubMed]
  33. G.-Y. He, Y.-X. Chen, E.-Y. Qi, “Numerical aperture of multimode fibers with curvature, a new theory formula,” in Fiber Optic Sensors V, K. D. Bennett, B.-Y. Kim, Y.-B. Liao, eds., Proc. SPIE2895, 552–558 (1996). [CrossRef]
  34. N. Barakat, A. A. Hamza, A. S. Geneid, “Multiple-beam interference fringes applied to GRIN optical wave guides to determine fiber characteristics,” Appl. Opt. 24, 4383–4386 (1985). [CrossRef]
  35. N. Barakat, H. A. El-Hannawi, F. El-Diasty, “Multiple-beam interference applied to GRIN optical fiber,” Appl. Opt. 27, 5090–5094 (1998). [CrossRef]
  36. N. Barakat, H. A. El-Hennawi, E. A. El-Ghafar, H. El-Gandoor, R. Hassan, F. El-Diasty, “Three-dimensional diffractive index of a GRIN optical waveguide using multiple beam interference fringes,” Opt. Commun. 191, 39–47 (2001). [CrossRef]
  37. M. Medhat, S. Y. Zaiat, A. Radi, M. Omer, “Application of fringes of equal chromatic order for investigating the effect of temperature on optical parameters of a GRIN optical fibre,” J. Opt. A: Pure Appl. Opt. 4, 174–179 (2002). [CrossRef]
  38. T. Okashi, K. Hotate, “Refractive index profile of an optical fibre: Its measurement by the scattering-pattern method,” Appl. Opt. 15, 2756–2764 (1976). [CrossRef]
  39. R. Henao, J. A. Pomarico, N. Russo, R. D. Torroba, M. Trivi, “Multimode optical fiber core measurement by speckle correlation,” Opt. Eng. 35, 26–30 (1996). [CrossRef]
  40. D. Z. Anderson, M. A. Bolshtyansky, B. Ya Zel’dovich, “Stabilization of the speckle pattern of a multimode fiber undergoing bending,” Opt. Lett. 21, 785–787 (1996). [CrossRef] [PubMed]
  41. E. Drinkmeyer, “Refractive-index profile determination of optical fibers from the diffraction pattern,” Appl. Opt. 16, 2802–2807 (1977). [CrossRef]
  42. M. A. Abd-El Rahman, E. A. Abd El-Ghafar, I. Nasser, “Angular dispersion of GRIN fiber using a laser sheet of light,” in Second International Conference on Experimental MechanicsF. S. Chau, C. Quan, eds. Proc. SPIE4317, 597–603 (2001). [CrossRef]
  43. P. Hlubina, T. Martynkien, W. Urbanczyk, “Measurements of intermodal dispersion in few-mode optical fibers using a spectral-domain white-light interferometric method,” Meas. Sci. Technol. 14, 784–789 (2003). [CrossRef]
  44. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” Pure Appl. Opt. 1, 197–200 (1999). [CrossRef]
  45. F. El-Diasty, “Application of Fizeau fringes with bending technique to determine the shear modulus of the cladding material of single-mode optical fibers through the mechanically induced change of refractive index,” Opt. Commun. 212, 267–274 (2002). [CrossRef]
  46. F. El-Diasty, “Theory and measurement of Young’s modulus radial profiles of bent single-mode optical fibers with the multiple-beam interference technique,” J. Opt. Soc. Am. A 18, 1171–1175 (2001). [CrossRef]
  47. A. A. Hamza, M. A. Mabrouk, W. A. Ramadan, M. A. Shams-Eldin, “Determination of GR-IN optical fiber parameters from transverse interferograms considering the refraction of the incident ray by the fiber,” Opt. Commun. 15, 131–138 (2002).
  48. W. Gorski, “The influence of diffraction in microinterferometry and microtomography of optical fibers,” Opt. Laser Eng. (in press).
  49. R. C. O’Rourke, “Three-dimensional photoelasticity,” J. Appl. Phys. 22, 872–878 (1951). [CrossRef]
  50. M. M. Frocht, “Photoelasticity,” vol. 1, 1941; “Photoelasticity,” vol. 2, 1948 (Wiley, New York).
  51. H. Tai, R. Rogowski, “Optical anisotropy induced by torsion and bending in an optical fiber,” Opt. Fiber Technol. 8, 162–169 (2002). [CrossRef]
  52. F. El-Diasty, “Multiple-beam interferometric determination of Poisson’s ratio and strain profiles along the cross section of bent single-mode optical fibers,” Appl. Opt. 39, 3197–3201 (2000). [CrossRef]
  53. E. Suhir, “Effect of the nonlinear stress-strain relationship on the maximum stress in silica fibers subjected to two-point bending,” Appl. Opt. 32, 1567–1572 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited