OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 26 — Sep. 10, 2003
  • pp: 5263–5273

Evaluation of some GRIN fiber parameters and the associated fraction mode loss due to mechanically induced optical anisotropy

Fouad El-Diasty  »View Author Affiliations


Applied Optics, Vol. 42, Issue 26, pp. 5263-5273 (2003)
http://dx.doi.org/10.1364/AO.42.005263


View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Some of the optical parameters of the bent multimode graded-index (GRIN) optical fiber in terms of indices of refraction, where the bending stresses broke the radial symmetry, are evaluated by use of multiple-beam Fizeau fringes. The variation of the index difference between the cladding index and core index in both the compression and tensile fiber regions is measured. The accuracy of measuring the index is ±1 × 10-4. The spatial resolution of the method is 1.39 μm. Evaluation of the acceptance angle, the numerical aperture, and the V number profiles of the bent fiber from the interference pattern at both sides of the bent fiber are presented. The fraction of the mode number lost has been evaluated. The method was used to study the influence of compression on diminishing the index difference that leads to a dissipation of energy and a considerable mode loss. It is obvious from the experimental data that the change of the index difference due to bending strongly affects the fraction of propagating mode number, especially at the small radii of curvature. Ignoring the variation of the index difference we evaluating the number of propagated modes number leads to an insufficient determination of the mode loss. It subsequently leads to an incorrect determination of the mode dispersion and the interface loss in bent GRIN fibers. The study confirms that the deviation of the guide axis from straightness with the radius of curvature of less than 1 cm could lead to a significant fraction mode loss.

© 2003 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: November 17, 2002
Revised Manuscript: May 26, 2003
Published: September 10, 2003

Citation
Fouad El-Diasty, "Evaluation of some GRIN fiber parameters and the associated fraction mode loss due to mechanically induced optical anisotropy," Appl. Opt. 42, 5263-5273 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-26-5263

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited