OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 26 — Sep. 10, 2003
  • pp: 5334–5350

Spatio-Temporal Operator Formalism for Holographic Recording and Diffraction in a Photorefractive-Based True-Time-Delay Phased-Array Processor

Andrew Kiruluta, Gour S. Pati, Gregory Kriehn, Paulo E. X. Silveira, Anthony W. Sarto, and Kelvin Wagner  »View Author Affiliations

Applied Optics, Vol. 42, Issue 26, pp. 5334-5350 (2003)

View Full Text Article

Acrobat PDF (1060 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a spatio-temporal operator formalism and beam propagation simulations that describe the broadband efficient adaptive method for a true-time-delay array processing (BEAMTAP) algorithm for an optical beamformer by use of a photorefractive crystal. The optical system consists of a tapped-delay line implemented with an acoustooptic Bragg cell, an accumulating scrolling time-delay detector achieved with a traveling-fringes detector, and a photorefractive crystal to store the adaptive spatio-temporal weights as volume holographic gratings. In this analysis, linear shift-invariant integral operators are used to describe the propagation, interference, grating accumulation, and volume holographic diffraction of the spatio-temporally modulated optical fields in the system to compute the adaptive array processing operation. In addition, it is shown that the random fluctuation in time and phase delays of the optically modulated and transmitted array signals produced by fiber perturbations (temperature fluctuations, vibrations, or bending) are dynamically compensated for through the process of holographic wavefront reconstruction as a byproduct of the adaptive beam-forming and jammer-excision operation. The complexity of the cascaded spatial-temporal integrals describing the holographic formation, and subsequent readout processes, is shown to collapse to a simple imaging condition through standard operator manipulation. We also present spatio-temporal beam propagation simulation results as an illustrative demonstration of our analysis and the operation of a BEAMTAP beamformer.

© 2003 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(090.0090) Holography : Holography
(280.5110) Remote sensing and sensors : Phased-array radar

Andrew Kiruluta, Gour S. Pati, Gregory Kriehn, Paulo E. X. Silveira, Anthony W. Sarto, and Kelvin Wagner, "Spatio-Temporal Operator Formalism for Holographic Recording and Diffraction in a Photorefractive-Based True-Time-Delay Phased-Array Processor," Appl. Opt. 42, 5334-5350 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Compton, Adaptive Antennas (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  2. B. Widrow and S. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).
  3. D. Psaltis and J. Hong, “Adaptive acoustooptic filter,” Applied Optics 23, 3475–3481 (1984).
  4. S.-C. Lin, J. Hong, R. Boughton, and D. Psaltis, “Broadband beamforming via acoustooptics,” 936, Advances in Optical Information Processing III D. R. Pape, ed. Proc. SPIE, 152–162 (1988).
  5. N. A. Riza and D. Psaltis, “Acoustooptic signal processors for transmission and reception of phased-array antenna signals,” Applied Optics 30, 3294–3303 (1991).
  6. R. M. Iodice and P. Rutterbusch, “Acoustooptic null steering processor (AONSP) hardware performance summary,” Proc. SPIE 2489, (Orlando, Fla.), April 1995.
  7. R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in B. M. Hendrickson and G. A. Koepf, eds., 1217, Opto-electronic Signal Processing for Phased-Array Antennas II, Proc. SPIE, 207–217 (1990).
  8. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
  9. R. Soref, “Optical dispersion technique for time-delay beam steering,” Applied Optics 31, 7395–7397 (1992).
  10. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Techn. Lett. 5, 1347–1349 (1993).
  11. L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, and J. C. Brock, “Low-loss fiber optic time-delay element for phased-array antennas,” in 2155 Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE, 13–23 (1994).
  12. D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
  13. G. Kriehn, A. Kiruluta, P. E. X. Silveira, S. Weaver, S. Kraut, K. Wagner, R. T. Weverka, and L. Griffiths, “Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas,” Appl. Opt. 39, 212–230 (2000).
  14. P. E. X. Silveira, G. Pati, and K. Wagner, “Optical finite impulse response neural networks,” Appl. Opt. 41, 4162–4180 (2002).
  15. B. Widrow, P. Mantey, L. Griffiths, and B. Goode, “Adaptive antenna systems,” Proc. IEEE 55, 2143–2161 (1967).
  16. A. W. Sarto, “Adaptive Phased-Array Radar Signal Processing using Photorefractive Volume Holograms,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1996).
  17. J. Shamir and K. H. Wagner, “Hologram recording in volume media: A generalized fourier optics analysis,” Appl. Opt. 6773–6786 (2002).
  18. T. Merlet, D. Dolfi, and J.-P. Huignard, “A traveling fringes photodetector for microwave signals,” IEEE J. Quantum Electron. 32, 778–783 (1996).
  19. G. Kriehn, A. M. Kiruluta, K. H. Wagner, D. Dolfi, and J.-P. Huignard, “Detection of a broadband RF signal using a traveling fringes detector,” in Terahertz and Gigahertz Photonics, Proc. SPIE 3795, 94–103 (1999).
  20. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, and E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Appl. Opt. 35, 5765–5775 (1996).
  21. J. Shamir, Optical Systems and Processes (SPIE Press, Bellingham, Wash., 1999).
  22. A. A. Zozulya and D. Z. Anderson, “Spatial structure of light and a nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
  23. D. Z. Anderson, R. Brockett, and N. Nuttall, “Information dynamics of photorefractive two-beam coupling,” Phys. Rev. Lett. 82, 1418–1421 (1999).
  24. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
  25. G. Kriehn, G. S. Pati, P. E. X. Silveira, F. Schlottau, K. Wagner, and D. Dolfi, “Demonstration of optical beam forming using BEAMTAP,” Microwave Photonics MWP-2000, 5–8 (2000).
  26. J. V. Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
  27. L. Thylen and D. Yevick, “Beam propagation method in anisotropic media,” Appl. Opt. 21, 2751–2754 (1982).
  28. K. Wagner and T. M. Slagle, “Optical competitive learning with VLSI/liquid-crystal winner-take-all modulators,” Appl. Opt. 32, 1408–1435 (1993).
  29. L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron., 15, 433–439 (1983).
  30. J. Jarem and P. Banerjee, Computational Methods for Electromagnetic and Optical System (Marcel Dekker, New York, 2000).
  31. K. Wu, “Acoustooptic fiber crossbar switches,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).
  32. S. Blair, “Optical soliton-based logic gates,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1998).
  33. M. Cronin-Golomb, “Whole beam method for photorefractive nonlinear optics,” Opt. Commun. 89, 276–282 (1992).
  34. P. Asthana, G. P. Tanguay, and B. K. Jenkins, “Analysis of weighted fan-out fan-in volume holographic optical interconnections,” Appl. Opt. 32, 1441–1469 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited