OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 27 — Sep. 20, 2003
  • pp: 5407–5412

In-line liquid-crystal microcell wave plates and their application for high-speed, reset-free polarization mode dispersion compensation in 40-Gbit/s systems

Bharat R. Acharya, Lothar Möller, Kirk W. Baldwin, Robert A. MacHarrie, Ray A. Stepnoski, Cheng C. Huang, Ron Pindak, and John A. Rogers  »View Author Affiliations


Applied Optics, Vol. 42, Issue 27, pp. 5407-5412 (2003)
http://dx.doi.org/10.1364/AO.42.005407


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the design, fabrication, and performance of a high-speed, continuously tunable, and reset-free polarization controller based on nematic liquid-crystal (NLC) microcell wave plates fabricated directly between the tips of optical fibers. This controller utilizes a pulsed driving scheme and optimized NLC materials to achieve a stepwise switching speed of 1 deg/µs, for arbitrary rotation angles with moderately low voltages. This compact microcell design requires no bulk optical components and has the potential to have low insertion loss. We describe the performance of these devices when implemented in polarization mode dispersion compensators for 40 Gbit/s systems. The good optical properties and the nonmechanical, high-speed, and low-power operation suggest that this type of device might be considered for some applications in dynamic compensation of polarization mode dispersion, polarization analysis, polarization division demultiplexing, and polarization scrambling in high-speed optical communication systems.

© 2003 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(160.3710) Materials : Liquid crystals
(350.0350) Other areas of optics : Other areas of optics

History
Original Manuscript: February 14, 2003
Revised Manuscript: May 22, 2003
Published: September 20, 2003

Citation
Bharat R. Acharya, Lothar Möller, Kirk W. Baldwin, Robert A. MacHarrie, Ray A. Stepnoski, Cheng C. Huang, Ron Pindak, and John A. Rogers, "In-line liquid-crystal microcell wave plates and their application for high-speed, reset-free polarization mode dispersion compensation in 40-Gbit/s systems," Appl. Opt. 42, 5407-5412 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-27-5407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. Poole, J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow, T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 114–162. [CrossRef]
  2. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.
  3. H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991). [CrossRef]
  4. F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992). [CrossRef]
  5. K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002). [CrossRef]
  6. T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave Technol. 17, 885–890 (1999). [CrossRef]
  7. L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000). [CrossRef]
  8. B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003). [CrossRef] [PubMed]
  9. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002). [CrossRef]
  10. R. M. A. Azzam, “Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system,” J. Opt. Soc. Am. A 17, 2105–2107 (2000). [CrossRef]
  11. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 38–39.
  12. See, for example, Ref. 1, p. 150.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited