OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 27 — Sep. 20, 2003
  • pp: 5413–5417

Fiber-optic cavity sensing of hydrogen diffusion

Daniel E. Vogler, Michel G. Müller, and Markus W. Sigrist  »View Author Affiliations


Applied Optics, Vol. 42, Issue 27, pp. 5413-5417 (2003)
http://dx.doi.org/10.1364/AO.42.005413


View Full Text Article

Enhanced HTML    Acrobat PDF (108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel type of fiber-optic cavity sensor for hydrogen diffusion into and out of fibers is presented. The sensor is an implementation of a cavity ringdown scheme in a silica-based single-mode fiber that has been exposed to gaseous hydrogen at normal pressure. The measured ringdown times during the H2 diffusion show good agreement with a theoretical diffusion model. This model allows the determination of the diffusion coefficient of hydrogen in silica, resulting in D = (3.02 ± 0.07) × 10-15 m2/s at 30 °C.

© 2003 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.5750) Optical devices : Resonators
(300.1030) Spectroscopy : Absorption

History
Original Manuscript: January 24, 2003
Revised Manuscript: May 20, 2003
Published: September 20, 2003

Citation
Daniel E. Vogler, Michel G. Müller, and Markus W. Sigrist, "Fiber-optic cavity sensing of hydrogen diffusion," Appl. Opt. 42, 5413-5417 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-27-5413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997). [CrossRef] [PubMed]
  2. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  3. G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002). [CrossRef] [PubMed]
  4. E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002). [CrossRef]
  5. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002). [CrossRef]
  6. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000). [CrossRef]
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  8. T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application 00121314.9 (9October2000).
  9. T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984). [CrossRef]
  10. Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983). [CrossRef]
  11. SMF-28 Optical Fiber, Product Information (Corning, One Riverfront Plaza, Corning, N.Y., 2001).
  12. T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002). [CrossRef] [PubMed]
  13. N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).
  14. K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983). [CrossRef]
  15. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).
  16. J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972). [CrossRef]
  17. J. L. Mrotek, M. J. Matthewson, C. R. Kurkjian, “Diffusion of moisture through optical fiber coatings,” J. Lightwave Technol. 19, 988–993 (2001). [CrossRef]
  18. P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991). [CrossRef]
  19. J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977). [CrossRef]
  20. D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited