OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 27 — Sep. 20, 2003
  • pp: 5427–5441

Assessment of the Accuracy of Snow Surface Direct Beam Spectral Albedo under a Variety of Overcast Skies Derived by a Reciprocal Approach through Radiative Transfer Simulation

Shusun Li and Xiaobing Zhou  »View Author Affiliations


Applied Optics, Vol. 42, Issue 27, pp. 5427-5441 (2003)
http://dx.doi.org/10.1364/AO.42.005427


View Full Text Article

Acrobat PDF (1653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With radiative transfer simulations it is suggested that stable estimates of the highly anisotropic direct beam spectral albedo of snow surface can be derived reciprocally under a variety of overcast skies. An accuracy of ±0.008 is achieved over a solar zenith angle range of θ0 ≤ 74° for visible wavelengths and up to θ0 ≤ 63° at the near-infrared wavelength λ = 862 nm. This new method helps expand the database of snow surface albedo for the polar regions where direct measurement of clear-sky surface albedo is limited to large θ0’s only. The enhancement will assist in the validation of snow surface albedo models and improve the representation of polar surface albedo in global circulation models.

© 2003 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.1190) Materials : Anisotropic optical materials
(240.6490) Optics at surfaces : Spectroscopy, surface
(290.1090) Scattering : Aerosol and cloud effects
(350.6050) Other areas of optics : Solar energy

Citation
Shusun Li and Xiaobing Zhou, "Assessment of the Accuracy of Snow Surface Direct Beam Spectral Albedo under a Variety of Overcast Skies Derived by a Reciprocal Approach through Radiative Transfer Simulation," Appl. Opt. 42, 5427-5441 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-27-5427


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. E. Walsh, J. Curry, M. Fahnestock, M. C. Kennicutt II, A. D. McGuire, W. B. Rossow, M. Steele, C. J. Vorosmarty, and R. Wharton, Enhancing NASA’s Contribution to Polar Science (National Academics Press, Washington, D.C., 2001).
  2. D. A. Robinson, K. F. Dewey, and R. R. Heim, “Global snow cover monitoring: an update,” Bull. Am. Meteorol. Soc. 74, 1689–1696 (1993).
  3. H. J. Zwally, J. C. Comiso, C. L. Parkinson, W. J. Campbell, F. D. Carsey, and P. Gloersen, “Antarctic sea ice, 1973–1976: satellite passive microwave observations,” NASA Spec. Pub. 459 (National Aeronautics and Space Administration, Washington, D.C., 1983).
  4. C. L. Parkinson, J. C. Comiso, H. J. Zwally, D. J. Cavalieri, P. Gloersen, and W. J. Campbell, “Arctic sea ice 1973–1976 from satellite passive microwave observations,” NASA Spec. Pub. 489 (National Aeronautics and Space Administration, Washington, D.C., 1987).
  5. P. GLoersen, W. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson, and H. J. Zwally, “Arctic and Antarctic sea ice, 1978–1987: satellite passive-microwave observations and analysis,” NASA Spec. Pub. 511 (National Aeronautics and Space Administration, Washington, D.C., 1992).
  6. J. Croll, Climate and Time in Geologic Relations: A Theory of Secular Change of the Earth’s Climate (Isbister, London, 1875).
  7. S. Manabe and R. J. Stouffer, “Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere,” J. Geophys. Res. 85, 5529–5554 (1980).
  8. W. M. Washington and G. A. Meehl, “General circulation model CO2 sensitivity experiments: snow-sea ice albedo parameterizations and globally averaged surface air temperature,” Clim. Change 8, 231–241 (1986).
  9. R. E. Dickinson, G. A. Meehl, and W. M. Washington, “Ice albedo feedback in a CO2-doubling simulation,” Clim. Change 10, 241–248 (1987).
  10. S. Manabe, R. J. Stouffer, M. J. Spelman, and K. Bryan, “Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. I: Annual mean response,” J. Clim. 4, 785–818 (1991).
  11. D. Rind, R. Healy, C. Parkinson, and D. Martinson, “The role of sea ice in 2 X CO2 climate model sensitivity. I: The total influence of sea ice thickness and extent,” J. Clim. 8, 449–463 (1995).
  12. W. Wiscombe and S. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980).
  13. J. J. Carroll and B. W. Fitch, “Effects of solar elevation and cloudiness on snow albedo at the south pole,” J. Geophys. Res. 86C, 5271–5276 (1981).
  14. T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669–18684 (1994).
  15. S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789–25807 (1998).
  16. X. Zhou, S. Li, and K. Morris, “Measurement of all-wave and spectral albedos of snow-covered summer sea ice in the Ross Sea, Antarctica,” Ann. Glaciol. 33, 267–274 (2001).
  17. D. K. Perovich, “Light reflection from sea ice during the onset of melt,” J. Geophys. Res. 99, 3351–3359 (1994).
  18. D. K. Perovich, “The optical properties of sea ice,” in Physics of Ice-Covered Seas, M. Lepparanta, ed. (Helsinki University Printing House, Helsinki, 1998), pp. 195–230.
  19. G. Weller, “Heat-energy transfer through a four-layer system: air snow, sea ice, sea water,” J. Geophys. Res. 73, 1209–1220 (1968).
  20. T. C. Grenfell and G. Maykut, “The optical properties of ice and snow in the Arctic Basin,” J. Glaciol. 18, 445–463 (1977).
  21. T. C. Grenfell and D. K. Perovich, “Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea,” J. Geophys. Res. 89, 3573–3580 (1984).
  22. T. C. Grenfell, “Radiative transfer model for sea ice with vertical variations,” J. Geophys. Res. 96, 16991–17001 (1992).
  23. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed. (Hemisphere, Washington, D.C., 1981).
  24. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” National Bureau of Standards Monogr. 160 (U.S. Department of Commerce, Washington, D.C., 1977).
  25. W. Mendenhall, D. D. Wackerly, and R. L. Scheaffer, Mathematical Statistics with Applications, 4th ed. (Duxbury, Belmont, Calif., 1990).
  26. S. Li, Z. Wan, and J. Dozier, “A component decomposition model for evaluating atmospheric effects in remote sensing,” J. Electromagn. Waves Appl. 1, 323–347 (1987).
  27. I. P. Grant and G. E. Hunt, “Discrete space theory of radiative transfer: I. Fundamentals,” Proc. R. Soc. London Ser. A 313, 183–197 (1969).
  28. W. J. Wiscombe, “Extension of the doubling method to inhomogeneous sources,” J. Quant. Spectrosc. Radiat. Transfer 16, 477–489 (1976).
  29. W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transfer 16, 635–658 (1976).
  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).
  31. M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, “Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces,” J. Quant. Spectrosc. Radiat. Transfer 63, 409–432 (1999).
  32. X. Zhou, “Optical remote sensing of snow on sea ice: ground measurements, satellite data analysis, and radiative transfer modeling,” Ph.D. dissertation (University of Alaska, Fairbanks, Alaska, 2002).
  33. T. H. Painter and J. Dozier, “Measurements of the bidirectional reflectance of snow at fine spectral and angular resolution,” in Proceedings of the 70th Annual Western Snow Conference, available online at http://www.westernsnow conference.org/2002/PDF/2002PainterAndDozier.pdf.
  34. K. Morris and M. O. Jeffries, “Seasonal contrasts in snow cover characteristics on Ross Sea ice floes,” Ann. Glaciol. 33, 61–68 (2001).
  35. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
  36. X. Zhou, S. Li, and K. Stamnes, “New geometrical-optics code for computing the optical properties of large dielectric spheres,” Appl. Opt. 42, 4295–4306 (2003).
  37. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105D, 10219–10236 (2000).
  38. A. A. Kokhanovsky and A. Macke, “The dependence of the radiative characteristics of optically thick media on the shape of particles,” J. Quant. Spectrosc. Radiat. Transfer 63, 393–407.
  39. L. Henyey and J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  40. E. Leontieva and K. Stamnes, “Remote sensing of cloud optical properties from ground-based measurements of transmittance: a feasibility study,” J. Appl. Meteorol. 35, 2011–2022 (1996).
  41. X. Dong, P. Minnis, T. P. Ackerman, E. E. Clothiaux, G. G. Mace, C. N. Long, and J. C. Liljegren, “A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plain Site,” J. Geophys. Res. 105, 4529–4539 (2000).
  42. S. Li, “A model for the anisotropic reflectance of pure snow,” M.A. thesis (University of California at Santa Barbara, Santa Barbara, Calif., 1982).
  43. W. Han, K. Stamnes, and D. Lubin, “Remote sensing of surface and cloud properties in the Arctic from AVHRR measurements,” J. Appl. Meteorol. 38, 989–1012 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited