OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 28 — Oct. 1, 2003
  • pp: 5649–5660

Realization of a multichannel integrated Young interferometer chemical sensor

Aurel Ymeti, Johannes S. Kanger, Jan Greve, Paul V. Lambeck, Robert Wijn, and Rene G. Heideman  »View Author Affiliations


Applied Optics, Vol. 42, Issue 28, pp. 5649-5660 (2003)
http://dx.doi.org/10.1364/AO.42.005649


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design, realization, and characterization of a four-channel integrated optical Young interferometer device that enables simultaneous and independent monitoring of three binding processes. The generated interference pattern is recorded by a CCD camera and analyzed with a fast-Fourier-transform algorithm. We present a thorough theoretical analysis of such a device. The realized device is tested by monitoring glucose solutions that induce well defined phase changes between output channels. The simultaneous measurement of three different glucose concentrations shows the multipurpose feature of such devices. The observed errors, caused by the mismatching of spatial frequencies of individual interference patterns with those determined from the CCD camera, are reduced with different reduction schemes. The phase resolution for different pairs of channels was ∼1 × 10-4 fringes, which corresponds to a refractive-index resolution of ∼8.5 × 10-8. The measured sensitivity coefficient of the phase change versus refractive-index change of ∼1.22 × 103 × 2π agrees well with the calculated coefficient of ∼1.20 × 103 × 2π.

© 2003 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(130.0130) Integrated optics : Integrated optics
(230.1150) Optical devices : All-optical devices

History
Original Manuscript: February 21, 2003
Revised Manuscript: May 14, 2003
Published: October 1, 2003

Citation
Aurel Ymeti, Johannes S. Kanger, Jan Greve, Paul V. Lambeck, Robert Wijn, and Rene G. Heideman, "Realization of a multichannel integrated Young interferometer chemical sensor," Appl. Opt. 42, 5649-5660 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-28-5649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B 8, 103–116 (1992). [CrossRef]
  2. E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995). [CrossRef]
  3. R. G. Heideman, P. V. Lambeck, “Integrated optical sensor system for detection of chemical concentrations,” in Proceedings of 1997 IEEE/LEOS Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 29–32.
  4. L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).
  5. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997). [CrossRef]
  6. R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999). [CrossRef]
  7. I. S. Duport, P. Benech, R. Rimet, “New integrated-optics interferometer in planar technology,” Appl. Opt. 33, 5954–5958 (1994). [CrossRef] [PubMed]
  8. A. Brandenburg, R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994). [CrossRef] [PubMed]
  9. A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997). [CrossRef]
  10. G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999). [CrossRef]
  11. C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996). [CrossRef]
  12. T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002). [CrossRef]
  13. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002). [CrossRef]
  14. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998). [CrossRef]
  15. O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002). [CrossRef] [PubMed]
  16. A. Wikerstal, “Multichannel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Ph.D. dissertation (University of Freiburg, Freiburg, Germany, 2001).
  17. A. Wikerstal, “Method for optical analysis and optical detector device,” European patentEP 1284418 (19February2003).
  18. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998), pp. 385–388.
  19. W. Lukosz, K. Tiefenthaler, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989). [CrossRef]
  20. R. Syms, J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).
  21. K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997). [CrossRef]
  22. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999). [CrossRef]
  23. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent sensors,” J. Lightwave Technol. 16, 573–582 (1998). [CrossRef]
  24. R. C. Weast, Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984–1985), p. D-234.
  25. S. Nakadate, “Phase detection of equidistant fringes for highly sensitive optical sensing. I. Principle and error analysis,” J. Opt. Soc. Am. A 5, 1258–1264 (1988). [CrossRef]
  26. M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991). [CrossRef]
  27. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  28. E. R. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N. J., 1974).
  29. M. Cerna, A. F. Harvey, “The fundamentals of FFT-based signal analysis and measurement.” Application Note 041 (National Instruments, 2000), http://www.ni.com .
  30. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” in Proceedings of IEEE 66 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 51–83. [CrossRef]
  31. A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981). [CrossRef]
  32. R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited