OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 28 — Oct. 1, 2003
  • pp: 5714–5721

Optical resonances in periodic surface arrays of metallic patches

W. L. Schaich, G. Schider, J. R. Krenn, A. Leitner, F. R. Aussenegg, I. Puscasu, B. Monacelli, and G. Boreman  »View Author Affiliations

Applied Optics, Vol. 42, Issue 28, pp. 5714-5721 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission of light along the surface normal through an air-quartz-glass interface covered with a periodic array of thin, rectangular gold patches has been studied over the visible to infrared range. The various structures that are observed can be qualitatively understood as arising from standing-wave resonances set by the size and surroundings of the metal patches. A method-of-moments calculational scheme provides simulations in good quantitative agreement with the data. It is shown how the standing-wave picture provides a useful conceptual framework to understand and exploit such systems.

© 2003 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory
(260.3060) Physical optics : Infrared
(300.6490) Spectroscopy : Spectroscopy, surface

Original Manuscript: October 16, 2002
Revised Manuscript: April 16, 2003
Published: October 1, 2003

W. L. Schaich, G. Schider, J. R. Krenn, A. Leitner, F. R. Aussenegg, I. Puscasu, B. Monacelli, and G. Boreman, "Optical resonances in periodic surface arrays of metallic patches," Appl. Opt. 42, 5714-5721 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Mittra, C. H. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” Proc. IEEE 76, 1593–1615 (1988). [CrossRef]
  2. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies, Taunton, UK, 1997).
  3. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  4. V. Kettunen, M. Kuittnen, J. Tarunen, P. Vahimaa, “Spectral filtering with finitely conducting inductive grids,” J. Opt. Soc. Am. A 15, 2783–2785 (1998). [CrossRef]
  5. K. D. Möller, O. Sternberg, H. Grebel, P. Lahanne, “Thick inductive cross shaped metal meshes,” J. Appl. Phys. 91, 9461–9465 (2002). [CrossRef]
  6. S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983). [CrossRef] [PubMed]
  7. T. Schimert, M. E. Koch, “Analysis of scattering from frequency-selective surfaces in the infrared,” J. Opt. Soc. Am. A 7, 1545–1553 (1990). [CrossRef]
  8. T. R. Schimert, A. J. Brouns, C. H. Chan, R. Mittra, “Investigation of millimeter-wave scattering from frequency selective surface,” IEEE Trans. Microwave Theory Tech. 39, 315–322 (1991). [CrossRef]
  9. I. Puscasu, D. Spencer, G. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39, 1570–1574 (2000). [CrossRef]
  10. I. Puscasu, W. L. Schaich, G. Boreman, “Modeling parameters for the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 40, 118–124 (2001). [CrossRef]
  11. I. Puscasu, W. L. Schaich, G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43, 101–107 (2002). [CrossRef]
  12. W. Gotschy, K. Vonmetz, A. Lectner, F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).
  13. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000). [CrossRef]
  14. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  17. J. Van Bladel, Singular Electromagnetic Fields and Sources (Oxford U. Press, Oxford, UK, 1991).
  18. R. F. Harrington, Field Computation by Moment Methods (Institute of Electrical and Electronics Engineers, New York, 1992).
  19. B. Lamprecht, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000). [CrossRef] [PubMed]
  20. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935). [CrossRef]
  21. M. G. Cottam, D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge U. Press, New York, 1989). [CrossRef]
  22. M. Cardona, “Fresnel reflection and surface plasmons,” Am. J. Phys. 39, 1277 (1971). [CrossRef]
  23. Of course one may include the coupling among surface wave vectors and, as shown in Section 3, good agreement is then found for the mode locations.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited