OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 28 — Oct. 1, 2003
  • pp: 5744–5748

Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging

Yuuki Watanabe, Kodo Kawase, Tomofumi Ikari, Hiromasa Ito, Youichi Ishikawa, and Hiroaki Minamide  »View Author Affiliations


Applied Optics, Vol. 42, Issue 28, pp. 5744-5748 (2003)
http://dx.doi.org/10.1364/AO.42.005744


View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1–2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

© 2003 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(260.3090) Physical optics : Infrared, far
(300.6270) Spectroscopy : Spectroscopy, far infrared

History
Original Manuscript: February 14, 2003
Revised Manuscript: May 19, 2003
Published: October 1, 2003

Citation
Yuuki Watanabe, Kodo Kawase, Tomofumi Ikari, Hiromasa Ito, Youichi Ishikawa, and Hiroaki Minamide, "Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging," Appl. Opt. 42, 5744-5748 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-28-5744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. S. Hartwick, D. T. Hodges, D. H. Barker, F. B. Foote, “Far infrared imagery,” Appl. Opt. 15, 1919–1922 (1976). [CrossRef] [PubMed]
  2. T. S. Hartwick, “Far infrared imaging techniques for law enforcement applications,” in Optics in Security and Law Enforcement, S. S. Nudelman, J. C. Richmond, C. M. Freeman, eds., Proc. SPIE108, 139–140 (1977). [CrossRef]
  3. A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984). [CrossRef]
  4. B. B. Hu, M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995). [CrossRef] [PubMed]
  5. D. M. Mittleman, S. Hunsche, L. Boivin, M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997). [CrossRef] [PubMed]
  6. S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998). [CrossRef]
  7. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999). [CrossRef]
  8. T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  9. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002). [CrossRef]
  10. B. Ferguson, S. Wang, D. Gray, D. Abbot, X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef]
  11. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.
  12. K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002). [CrossRef]
  13. S. Kawata, K. Sasaki, S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. I. Basis,” J. Opt. Soc. Am. A 4, 2101–2106 (1987). [CrossRef] [PubMed]
  14. K. Sasaki, S. Kawata, S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. II. Entropy minimization,” J. Opt. Soc. Am. A 6, 73–79 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited