OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 29 — Oct. 10, 2003
  • pp: 5897–5905

Comparison of linear and rotationally shearing interferometric layouts for extrasolar planet detection from space

Marija Strojnik and Gonzalo Paez  »View Author Affiliations


Applied Optics, Vol. 42, Issue 29, pp. 5897-5905 (2003)
http://dx.doi.org/10.1364/AO.42.005897


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the point spread function and the modulation transfer function (MTF) as two figures-of-merit to evaluate the performance of the multiaperture interferometric configurations for the detection of a faint planet in the vicinity of its bright star. We design nonredundant interferometric layouts that provide satisfactory coverage of the spatial frequencies of interest. We propose a design incorporating a rotating, rotationally shearing interferometer in a gravity-free environment and compare its performance with the Earth-based, fixed, linear configurations. The side peak of its MTF may be centered on the coordinate associated with a likely planet spatial frequency, resulting in planet signal enhancement and isolation.

© 2003 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.4280) Imaging systems : Noise in imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(350.4600) Other areas of optics : Optical engineering

History
Original Manuscript: April 7, 2003
Revised Manuscript: May 29, 2003
Published: October 10, 2003

Citation
Marija Strojnik and Gonzalo Paez, "Comparison of linear and rotationally shearing interferometric layouts for extrasolar planet detection from space," Appl. Opt. 42, 5897-5905 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-29-5897


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Flores, G. Paez, M. Strojnik, “Optimal aperture configuration for a segmented and partially diluted large telescope,” J. Mod. Opt. 50, 729–742 (2003).
  2. W. Zou, “Generalized figure-control algorithm for large segmented telescope mirrors,” J. Opt. Soc. Am. A 18, 638–649 (2001). [CrossRef]
  3. M. S. Scholl, “Signal generated by an extra-solar-system planet detected by a rotating rotationally shearing interferometer,” J. Opt. Soc. Am. A 13, 1584–1592 (1996). [CrossRef]
  4. M. S. Scholl, G. Paez, “Cancellation of the star light generated by a nearby star-planet system upon detection with a rotationally shearing interferometer,” Infrared Phys. Technol. 40, 357–365 (1999). [CrossRef]
  5. F. Merkle, “Synthetic-aperture imaging with the European very large telescope,” J. Opt. Soc. Am. A 5, 904–913 (1988). [CrossRef]
  6. P. M. Hinz, J. R. P. Angel, J. F. Hoffmann, D. W. McCarthy, P. C. McGuire, M. Cheselka, J. L. Hora, N. J. Woolf, “Imaging circumstellar environments with a nulling interferometer,” Nature 395, 251–256 (1998). [CrossRef]
  7. G. Paez, M. Strojnik, “Radiometry,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 649–699.
  8. B. Koehler, C. Flebus, “VLTI auxiliary telescopes,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 13–24 (2000). [CrossRef]
  9. F. Derie, “VLTI delay lines: design, development, and performance requirements,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 25–30 (2000). [CrossRef]
  10. L. Zago, S. Droz, “A small parallel manipulator for the active alignment and focusing of the secondary mirror of the VLTI ATS,” in Optical Design, Materials, Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 450–455 (2000). [CrossRef]
  11. R. Wilhelm, “Comparing geometrical and wave-optical algorithms of a novel propagation code applied to the VLTI,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 89–100 (2001). [CrossRef]
  12. N. Nakagawa, M. Hayashi, M. Kaweda, H. Matsuhara, T. Matsumoto, H. Murakami, H. Okuda, T. Onaka, H. Shibai, M. Ueno, “HII/L2 mission: future Japanese infrared astronomical mission,” in Space Telescopes and Instruments, V. P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 462–470 (1998). [CrossRef]
  13. A. Boccaletti, P. Riaud, D. Rouan, “Speckle symmetry with high-contrast coronographs,” Publ. Astron. Soc. Pac. 114, 132–136 (2002). [CrossRef]
  14. V. L. Gamiz, D. M. Payne, “Optical array interferometry: imaging through the atmosphere,” Proc. SPIE 2200, 516–527 (1994). [CrossRef]
  15. O. Guyon, F. Roddier, “Aperture rotation synthesis: optimization of the (u, v)-plane coverage for a rotating phased array of telescopes,” Publ. Astron. Soc. Jpn. 113, 98–104 (2001). [CrossRef]
  16. N. S. D. Horner, M. E. Gewrmain, F. H. Harris, M. S. Johnson, K. J. Johnston, D. G. Monet, M. A. Murison, J. D. Philips, R. D. Reasenberg, P. K. Seidelmann, S. E. Urban, R. D. Vassar, “Full-sky astrometric mapping explorer: an optical, astrometric survey mission,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobson, eds., SPIE Proc.4013, 473–481 (2000). [CrossRef]
  17. C. Haupt, K. Kudielka, E. Fischer, U. Johann, “High precision optical metrology for the SMART-2 mission as precursor for the DARWIN satellite constellation,” in Interferometry XI: Techniques and Analysis, K. Creath, J. Schmit, eds., Proc. SPIE4777, 143–158 (2002). [CrossRef]
  18. A. J. Penny, A. Leger, J. M. Marriotti, C. Schalinski, C. L. Eiroa, J. Robin, M. Fridlund, “DARWIN interferometer,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 666–671 (1998). [CrossRef]
  19. T. Nakajima, H. Matsuhara, “Sensitivity of an imaging space infrared interferometer,” Appl. Opt. 40, 514–526 (2001). [CrossRef]
  20. TPF Science working group, TPF: Terrestrial Planet Finder, Origins of Stars, Planets and Life, C. A. Beichman, N. J. Woolf, C. A. Lindensmith, eds., JPL Pub. 99-003 (Jet Propulsion Laboratory, Pasadena, Calif., 1999).
  21. C. Aime, R. Soummer, B. Lopez, “Stellar coronography with a redundant array of telescopes in space: the multiple mask coronograph,” Astron. Astrophys. 370, 680–688 (2001). [CrossRef]
  22. P. Nisenson, C. Papaliolios, “Detection of Earth-like planets using apodized telescopes,” Astrophys. J. 548, L201–L205 (2001). [CrossRef]
  23. G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1971 (1997). [CrossRef]
  24. G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998). [CrossRef]
  25. M. S. Scholl, G. Paez, “Simulated interferometric patterns generated by a nearby star-planet system and detected by a rotationally shearing interferometer,” J. Opt. Soc. Am. A 16, 2019–2024 (1999). [CrossRef]
  26. J. Gaskill, Linear Systems, Fourier Transforms, and Applications in Optics (Wiley, New York, 1978) pp. 301–306.
  27. S. M. Watson, J. P. Mills, S. K. Rogers, “Two-point resolution criterion for multiaperture optical telescopes,” J. Opt. Soc. Am. A 5, 893–903 (1988). [CrossRef]
  28. J. L. Flores, G. Paez, M. Strojnik, “Design of a diluted-aperture by use of the practical cutoff frequency,” Appl. Opt. 38, 6010–6018 (1999). [CrossRef]
  29. C. S. Williams, O. A. Becklund, Optical Transfer Function (Wiley, New York, 1989) pp. 384–386.
  30. G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.
  31. H. W. Epps, S. S. Vogt, “Extremely achromatic f/1.0 all-spherical camera constructed for the high-resolution echelle spectrometer of the Keck telescope,” Appl. Opt. 32, 6270–6279 (1993). [CrossRef] [PubMed]
  32. I. S. McLean, F. H. Chaffee, “Instrumentation for the Keck Observatory,” in Optical and IR Telescope Instrumentation and Detectors, M. Iye, A. F. Moorwood, eds., Proc. SPIE4008, pp. 2–7 (2000). [CrossRef]
  33. J. R. Fienup, “MTF and integration time versus fill factor for sparse-aperture imaging systems,” in Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras, S. R. Gyzak, M. J. Eckart, R. D. Fieto, P. S. Idell, eds., Proc. SPIE4091, 43–47 (2000). [CrossRef]
  34. R. D. Fiete, J. A. Mooney, T. A. Tantalo, J. R. Calus, “Image quality assessment of sparse-aperture designs with decreasing fill factors,” in Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras, S. R. Cyzok, M. J. Eckart, R. D. Fiete, P. S. Idell, eds., Proc. SPIE4091, 64–73 (2000). [CrossRef]
  35. S. Prasad, S. R. Kulkarni, “Noise in optical synthesis images: I. Ideal Michelson interferometer,” J. Opt. Soc. Am. A 6, 1702–1714 (1989). [CrossRef]
  36. M. J. E. Golay, “Point array having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited