OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 29 — Oct. 10, 2003
  • pp: 5906–5917

Determination of the optimum cluster parameters in a clustered free-space optical interconnect

Marc Châteauneuf and Andrew G. Kirk  »View Author Affiliations


Applied Optics, Vol. 42, Issue 29, pp. 5906-5917 (2003)
http://dx.doi.org/10.1364/AO.42.005906


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model for a clustered free-space optical interconnect is developed and is used to determine the maximum array density that can be achieved, together with the optimal cluster parameters that maximize this density. This model includes misalignment tolerance and the impact of multimode vertical-cavity surface-emitting laser beams. We find that for short interconnect distances, the maximum channel density is limited by the speed of the relay lenses, but as the interconnect distance increases, geometric aberrations become the limiting factor. We also determine the interconnect distance below which a micro-channel relay is more suitable and the distance above which a single-lens solution is adequate.

© 2003 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(080.2720) Geometric optics : Mathematical methods (general)
(200.2610) Optics in computing : Free-space digital optics
(220.2740) Optical design and fabrication : Geometric optical design
(220.4830) Optical design and fabrication : Systems design
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: February 13, 2003
Revised Manuscript: July 7, 2003
Published: October 10, 2003

Citation
Marc Châteauneuf and Andrew G. Kirk, "Determination of the optimum cluster parameters in a clustered free-space optical interconnect," Appl. Opt. 42, 5906-5917 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-29-5906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996). [CrossRef]
  2. D. A. B. Miller, “Physical reason for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  3. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996). [CrossRef] [PubMed]
  4. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).
  5. H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).
  6. G. Kim, X. Han, R. T. Chen, “An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements,” J. Lightwave Technol. 18, 1477–1486 (2000). [CrossRef]
  7. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001). [CrossRef]
  8. C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000). [CrossRef]
  9. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997). [CrossRef]
  10. D. T. Neilson, C. P. Barrett, “Performance trade-offs for conventional lenses for free-space digital optics,” Appl. Opt. 35, 1240–1248 (1996). [CrossRef] [PubMed]
  11. M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002). [CrossRef] [PubMed]
  12. M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000). [CrossRef]
  13. H. Sasaki, K. Kotani, H. Wada, T. Takamori, T. Ushikubo, “Scalability analysis of diffractive optical element-based free-space photonic circuits for interoptoelectronic chip interconnections,” Appl. Opt. 40, 1843–1855 (2001). [CrossRef]
  14. F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998). [CrossRef]
  15. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Optics Commun. 86, 365–370 (1991). [CrossRef]
  16. R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996). [CrossRef]
  17. M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998). [CrossRef]
  18. M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstiam, eds., Proc SPIE4089, 905–916 (2000). [CrossRef]
  19. A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993). [CrossRef]
  20. V. Baukens, “Scalable micro-optical modules for short-distance photonic-VLSI interconnections,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, Belgium, 2001).
  21. M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of a hybrid micro/macro-optical method for distortion removal in free-space optical interconnections,” J. Opt. Soc. Am. A 19, 2473–2478 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited