OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 3 — Jan. 20, 2003
  • pp: 436–444

Simulation of rainbows, coronas, and glories by use of Mie theory

Philip Laven  »View Author Affiliations


Applied Optics, Vol. 42, Issue 3, pp. 436-444 (2003)
http://dx.doi.org/10.1364/AO.42.000436


View Full Text Article

Enhanced HTML    Acrobat PDF (2463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mie theory offers an exact solution to the problem of scattering of sunlight by spherical drops of water. Until recently, most applications of Mie theory to scattering of light were restricted to a single wavelength. Mie theory can now be used on modern personal computers to produce full-color simulations of atmospheric optical effects, such as rainbows, coronas, and glories. Comparison of such simulations with observations of natural glories and cloudbows is encouraging.

© 2003 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.4020) Scattering : Mie theory

History
Original Manuscript: January 16, 2002
Revised Manuscript: March 25, 2002
Published: January 20, 2003

Citation
Philip Laven, "Simulation of rainbows, coronas, and glories by use of Mie theory," Appl. Opt. 42, 436-444 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-3-436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Boyer, The Rainbow: From Myth to Mathematics (Princeton University, Princeton, N.J., 1987; reprint of 1959 Thomas Yoseloff edition).
  2. R. L. Lee, A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Penn State, University Park, Pa., 2001).
  3. G. B. Airy, “On the intensity of light in the neighbourhood of a caustic,” Trans. Cambridge Philos. Soc. 6, Part 3, 397–403 (1838).
  4. G. Mie, “Beitrage zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. Leipzig 25, 377–445 (1908). [CrossRef]
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981; reprint of 1957 Wiley edition), pp. 167–171.
  6. Ref. 5, pp. 152–153.
  7. H. M. Nussenzveig, “The theory of the rainbow,” in Atmospheric Phenomena (Freeman, San Francisco, Calif., 1980), pp. 60–71.
  8. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979). [CrossRef]
  9. C. F. Bohren, T. J. Nevitt, “Absorption by a sphere: a simple approximation,” Appl. Opt. 22, 774–775 (1983). [CrossRef] [PubMed]
  10. J. V. Dave, “Scattering of visible light by large water spheres,” Appl. Opt. 8, 155–164 (1969). [CrossRef] [PubMed]
  11. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  12. K. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971). [CrossRef]
  13. S. T. Shipley, J. A. Weinman, “A numerical study of scattering by large dielectric spheres,” J. Opt. Soc. Am. 68, 130–134 (1978). [CrossRef]
  14. A. Ungut, G. Grehan, G. Gouesbet, “Comparisons between geometrical optics and Lorenz-Mie theory,” Appl. Opt. 20, 2911–2918 (1981). [CrossRef] [PubMed]
  15. R. T. Wang, H. C. van de Hulst, “Rainbows: Mie computation and the Airy approximation,” Appl. Opt. 30, 106–117 (1991). [CrossRef] [PubMed]
  16. E. A. Hovenac, J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781–795 (1992). [CrossRef]
  17. R. L. Lee, “Mie theory, Airy theory, and the natural rainbow,” Appl. Opt. 37, 1506–1519 (1998). [CrossRef]
  18. R. K. Brandt, R. G. Greenler, “Color simulation of size-dependent features of rainbows,” presented at the Seventh Topical Meeting on Meteorological Optics, Boulder, Colorado, 5–8 June 2001; available at http://www.asp.ucar.edu/MetOptics/Preprints.pdf .
  19. S. D. Gedzelman, J. A. Lock, “Simulating coronas in color,” presented at the Seventh Topical Meeting on Meteorological Optics, Boulder, Colorado, 5–8 June 2001; available at http://www.asp.ucar.edu/MetOptics/Preprints.pdf .
  20. H. C. van de Hulst, R. T. Wang, “Glare points,” Appl. Opt. 30, 4755–4763 (1991). [CrossRef] [PubMed]
  21. X. Han, “Study of refractometry of rainbow and applications to the measurement of instability and temperature gradient of a liquid jet,” Ph.D. dissertation (University of Rouen, Rouen, France, 2000), available at http://www.coria.fr/LESP/OP15/Han/TheseHan.htm .
  22. G. P. Können, J. H. de Boer, “Polarized rainbow,” Appl. Opt. 18, 1961–1965 (1979). [CrossRef] [PubMed]
  23. S. D. Gedzelman, J. A. Lock, “Simulating coronas in color,” Appl. Opt. 42, 497–504 (2003). [CrossRef] [PubMed]
  24. S. D. Gedzelman, “Simulating glories and cloudbows in color,” Appl. Opt. 42, 429–435 (2003). [CrossRef] [PubMed]
  25. H. C. van de Hulst, “A theory of the anti-coronae,” J. Opt. Soc. Am. 37, 16–22 (1947). [CrossRef]
  26. T. S. Fahlen, H. C. Bryant, “Direct observation of surface waves on droplets,” J. Opt. Soc. Am. 56, 1635–1636 (1966). [CrossRef]
  27. Ref. 8, pp. 1073–1078.
  28. W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge University, Cambridge, UK, 2001).
  29. D. K. Lynch, W. Livingston, Color and Light in Nature (Cambridge University, Cambridge, UK, 2001).
  30. D. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Mo., 1981).
  31. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, and Some Mathematical Functions (Longman, London, 1986).
  32. P. Schiebener, J. Straub, J. M. H. L. Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990). [CrossRef]
  33. International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (1997), http://www.iapws.org/relguide/rindex.pdf .
  34. G. Wyszecki, W. S. Styles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), pp. 138–139.
  35. D. Bruton, “Color science” (1996), http://www.physics.sfasu.edu/astro/color/spectra.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited