OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 3 — Jan. 20, 2003
  • pp: 476–485

Coronas and iridescence in mountain wave clouds

Joseph A. Shaw and Paul J. Neiman  »View Author Affiliations


Applied Optics, Vol. 42, Issue 3, pp. 476-485 (2003)
http://dx.doi.org/10.1364/AO.42.000476


View Full Text Article

Acrobat PDF (3293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use Fraunhofer diffraction theory and meterological data to determine the nature of cloud-particle distributions and the mean particle sizes required for interpreting photographs of coronas and iridescence in mountain wave clouds. Traditional descriptions of coronas and iridescence usually explain these optical phenomena as diffraction by droplets of liquid water. Our analysis shows that the photographed displays have mean particle sizes from 7.6 to 24.3 μm, with over half the cases requiring diffraction by small (~20 μm) quasispherical ice particles rather than liquid water droplets. Previous documentation of coronas produced by ice particles are limited to observations in cirrus clouds that appear to be composed of small ice crystals, whereas our observations suggest that coronas and iridescence quite often can be created by tiny quasispherical ice particles that might be unique to mountain wave clouds. Furthermore, we see that the dominant colors in mountain wave-cloud coronas are red and blue, rather than the traditionally described red and green.

© 2003 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3920) Atmospheric and oceanic optics : Meteorology

Citation
Joseph A. Shaw and Paul J. Neiman, "Coronas and iridescence in mountain wave clouds," Appl. Opt. 42, 476-485 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-3-476


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
  2. K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1084 (1979).
  3. J. A. Lock and L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
  4. K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
  5. K. Sassen, G. G. Mace, J. Hallett, and M. R. Poellot, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
  6. J. A. Shaw, “The Christmas corona,” Opt. Photon. News (April 1997), pp. 52–53.
  7. S. D. Gedzelman and J. A. Lock, “Simulating coronas in color,” Appl. Opt. 42, 497–504 (2003).
  8. R. B. Smith, “The influence of the mountains on the atmosphere,” in Advances in Geophysics, B. Saltzman, ed. (Academic, New York, 1979), vol. 21, pp. 87–230.
  9. D. R. Durran, Mesoscale Meteorology and Forecasting, P.S. Ray, ed. (American Meteorological Society, Boston, 1986), pp. 472–492.
  10. T. Q. Carney, A. J. Bedard, Jr., J. M. Brown, J. McGinley, T. Lindholm, and M. J. Kraus, Hazardous Mountain Winds and Their Visual Indicators, NOAA Handbook (Environmental Research Laboratories, Boulder, Colo., 1996).
  11. F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, and L. S. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
  12. C. D. Whiteman, Mountain Meteorology: Fundamentals and Applications (Oxford U. Press, New York, 2000).
  13. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).
  14. A. J. Heymsfield and L. M. Miloshevich, “Homogeneous nucleation and supercooled liquid water in orographic wave clouds,” J. Atmos. Sci. 50, 2335–2353 (1993).
  15. A. J. Heymsfield and L. M. Miloshevich, “Relative humidity and temperature influences on cirrus formation and evolution: observations from wave clouds and FIRE II,” J. Atmos. Sci. 52, 4302–4326 (1995).
  16. H. Gerber, C. H. Twohy, B. Gandrud, A. J. Heymsfield, G. M. McFarquhar, P. J. DeMott, and D. C. Rogers, “Measurements of wave-cloud microphysical properties with two new aircraft probes,” Geophys. Res. Lett. 25, 1117–1120 (1998).
  17. A. Heymsfield, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, Colo. 80301 (personal communication, 2001).
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  20. P. Queney, “The problem of airflow over mountains: a summary of theoretical studies,” Bull. Am. Meteorol. Soc. 29, 16–26 (1948).
  21. A. J. Heymsfield and C. M. R. Platt, “Parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
  22. C. M. R. Platt, J. D. Spinhirne, and W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
  23. K. Sassen, D. O. Starr, and T. Uttal, “Mesoscale and microscale structure of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–386 (1989).
  24. J. Appleman, “The formation of exhaust condensation trails by jet aircraft,” Bull. Am. Meteorol. Soc. 34, 14–20 (1953).
  25. P. Parviainen, C. F. Bohren, and V. Makela, “Vertical elliptial coronas caused by pollen,” Appl. Opt. 33, 4548–4554 (1994).
  26. E. Trankle and B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994).
  27. F. M. Mims, “Solar corona caused by juniper pollen in Texas,” Appl. Opt. 37, 1486–1488 (1998).
  28. P. J. Neiman and J. A. Shaw are preparing a manuscript to be called “Optical diffraction patterns in mountain wave clouds over northeastern Colorado.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited