OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 3 — Jan. 20, 2003
  • pp: 486–491

Cirrus cloud iridescence: a rare case study

Kenneth Sassen  »View Author Affiliations

Applied Optics, Vol. 42, Issue 3, pp. 486-491 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2–14.4-km) and cold (-69.7 ° to -75.5°) tropopause-topped cirrus cloud, iridescence was noted from ∼6.0° to ∼13.5° from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5–5.5-μm effective diameter. The linear depolarization ratios of δ = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

© 2003 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects

Original Manuscript: January 18, 2002
Revised Manuscript: May 31, 2002
Published: January 20, 2003

Kenneth Sassen, "Cirrus cloud iridescence: a rare case study," Appl. Opt. 42, 486-491 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  2. M. E. Mascart, Traite d’Optique (Gauthier-Villars et Fils, Paris, 1889), Vol. 1.
  3. K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991). [CrossRef] [PubMed]
  4. W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  6. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991). [CrossRef] [PubMed]
  7. P. Parviainen, C. F. Bohren, V. Makela, “Vertical elliptical coronas caused by pollen,” Appl. Opt. 33, 4548–4551 (1994). [CrossRef] [PubMed]
  8. E. Trankle, B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994). [CrossRef] [PubMed]
  9. G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912). [CrossRef]
  10. M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).
  11. K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979). [CrossRef]
  12. K. Sassen, “Cirrus clouds: a modern perspective,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 11–40.
  13. K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001). [CrossRef]
  14. S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987). [CrossRef]
  15. K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001). [CrossRef]
  16. K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001). [CrossRef]
  17. K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray- tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000). [CrossRef]
  18. M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998). [CrossRef]
  19. K. Sassen, J. Zhu, S. Benson, “Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003). [CrossRef] [PubMed]
  20. P. DeMott, “Laboratory study of cirrus cloud processes,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 136–146.
  21. R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited