OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 5947–5962

Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead

Valeri I. Babushok, Frank C. DeLucia, Jr., Paul J. Dagdigian, Michael J. Nusca, and Andrzej W. Miziolek  »View Author Affiliations

Applied Optics, Vol. 42, Issue 30, pp. 5947-5962 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report initial results of a study aimed toward developing a computational fluid dynamics (CFD) model to simulate the laser-induced breakdown spectroscopy (LIBS) plume for the purpose of understanding the physical and chemical factors that control the LIBS signature. The kinetic model developed for modeling studies of the LIBS plume from metallic lead includes a set of air reactions and ion chemistry as well as the oxidization, excitation, and ionization of lead atoms. At total of 38 chemical species and 220 reactions are included in the model. Experimental measurements of the spatial and temporal dependence of a number of lead emission lines have been made of the LIBS plume from metallic lead. The mechanism of generation of excited Pb states in the LIBS plume is analyzed through kinetic modeling and sensitivity analysis. Initial CFD model results for the LIBS plume are presented.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6360) Spectroscopy : Spectroscopy, laser
(350.5400) Other areas of optics : Plasmas

Original Manuscript: March 3, 2003
Revised Manuscript: June 30, 2003
Published: October 20, 2003

Valeri I. Babushok, Frank C. DeLucia, Paul J. Dagdigian, Michael J. Nusca, and Andrzej W. Miziolek, "Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead," Appl. Opt. 42, 5947-5962 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U.S. Environmental Protection Agency, “EPA health effects notebook for hazardous air pollutants,” draft EPA-452/D-95-00, PB95-503579 (Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 1994).
  2. Agency for Toxic Substances and Disease Registry, Public Health Statement on Lead (U.S. Department of Health and Human Services, Atlanta, Ga., 1990).
  3. R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001). [CrossRef]
  4. A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997). [CrossRef]
  5. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992). [CrossRef]
  6. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997). [CrossRef]
  7. A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003). [CrossRef]
  8. A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003). [CrossRef]
  9. F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001). [CrossRef]
  10. J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002). [CrossRef]
  11. D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).
  12. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, computer code GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech .
  13. J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997). [CrossRef]
  14. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994). [CrossRef]
  15. D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997). [CrossRef]
  16. A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).
  17. D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974). [CrossRef]
  18. N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991). [CrossRef]
  19. J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994). [CrossRef]
  20. W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991). [CrossRef]
  21. M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991). [CrossRef]
  22. W. R. Anderson, M. A. Schroeder, “Chemical mechanism for ETC plasma interaction with air,” in Proceedings of the 36th Joint Army Navy NASA Air Force (JANNAF) Combustion Meeting, R. S. Fry, M. T. Gannaway, eds., CPIA Publ. 691 (Chemical Propulsion Information Agency, Columbia, Maryland, 1999), Vol. 2, pp. 43–54.
  23. L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000). [CrossRef]
  24. J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000). [CrossRef]
  25. N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997). [CrossRef]
  26. A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988). [CrossRef]
  27. D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974). [CrossRef]
  28. P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978). [CrossRef]
  29. D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986). [CrossRef]
  30. R. J. Donovan, H. M. Gillespie, “Reactions of atoms in ground and electronically excited states,” in Reaction Kinetics, P. G. Ashmore, ed. (Chemical Society, London, 1975), Vol. 1, pp. 14–92. [CrossRef]
  31. D. R. Jenkins, “The determination of cross-sections for the quenching of resonance radiation of metal atoms. V. Results for lead,” Proc. R. Soc. London Ser. A 313, 551–564 (1969). [CrossRef]
  32. P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998). [CrossRef]
  33. W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975). [CrossRef]
  34. C. H. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral Line Intensities (U.S. Government Printing Office, Washington, D.C., 1962).
  35. D. Husain, “The reactivity of electronically excited species,” Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977). [CrossRef]
  36. B. Nizamov, P. J. Dagdigian, “Collisional quenching and energy transfer of the z5DJo states of the Fe atom,” J. Phys. Chem. A 104, 6345–6350 (2000, 2001). [CrossRef]
  37. S. Rosenwaks, Department of Physics, University of the Negev, Beersheva, Israel (personal communication, 2001).
  38. W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79–110 (2000). [CrossRef]
  39. J. B. Hasted, Physics of Atomic Collisions (Butterworth, London, 1964).
  40. R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, C. F. Miller, Chemkin Collection, Release 3.7 computer code (Reaction Design, San Diego, Calif., 2002), http://www.reactiondesign.com .
  41. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999). [CrossRef]
  42. R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001). [CrossRef]
  43. R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001). [CrossRef]
  44. Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994). [CrossRef]
  45. C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001). [CrossRef]
  46. M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).
  47. M. J. Nusca, “Numerical simulation of the ram accelerator using a new chemical kinetics mechanism,” J. Propul. Power 18, 44–52 (2002). [CrossRef]
  48. M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002). [CrossRef]
  49. G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001). [CrossRef]
  50. G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited