OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6036–6039

Laser-induced plasma spectroscopy to as low as 130 nm when a gas-purged spectrograph and ICCD detection are used

Saara Kaski, Heikki Häkkänen, and Jouko Korppi-Tommola  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 6036-6039 (2003)
http://dx.doi.org/10.1364/AO.42.006036


View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental setup is described for measuring laser-induced plasma emission spectra in the near vacuum UV with a Czerny-Turner spectrograph and intensified charge-coupled device under atmospheric pressure. With a simple gas-purge technique, emission lines down to 130 nm could be recorded. The strongest emission lines of bromine, chlorine, and iodine in the near vacuum UV are easily detected.

© 2003 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

History
Original Manuscript: January 17, 2003
Revised Manuscript: May 19, 2003
Published: October 20, 2003

Citation
Saara Kaski, Heikki Häkkänen, and Jouko Korppi-Tommola, "Laser-induced plasma spectroscopy to as low as 130 nm when a gas-purged spectrograph and ICCD detection are used," Appl. Opt. 42, 6036-6039 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-6036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983). [CrossRef]
  2. C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced breakdown spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996). [CrossRef]
  3. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998). [CrossRef]
  4. L. M. Berman, P. J. Wolf, “Laser-induced breakdown spectroscopy of liquids: aqueous solutions of nickel and chlorinated hydrocarbons,” Appl. Spectrosc. 52, 438–443 (1998). [CrossRef]
  5. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detectuin of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998). [CrossRef]
  6. E. D. Lancaster, K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy,” Appl. Opt. 38, 1476–1480 (1999). [CrossRef]
  7. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001). [CrossRef]
  8. M. A. Khater, P. van Kampen, J. T. Costello, J. P. Mosnier, E. T. Kennedy, “Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys,” J. Phys. D. 33, 2252–2262 (2000). [CrossRef]
  9. M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–982 (2002). [CrossRef]
  10. C. J. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, “Applications of laser-induced emission spectral analysis for industrial process and quality control,” J. Anal. At. Spectrom. 7, 1029–1035 (1992). [CrossRef]
  11. A. González, M. Ortiz, J. Campos, “Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995). [CrossRef]
  12. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000). [CrossRef]
  13. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis— comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta Part B 56, 661–669 (2001). [CrossRef]
  14. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. ActaPart B 56, 637–649 (2001). [CrossRef]
  15. C. Aragón, J. A. Aquilera, F. Penalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999). [CrossRef]
  16. W. Sdorra, K. Niemax, “Basic inverstigations for laser microanalysis III: application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited