OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6057–6062

Line-focused laser ablation for depth-profiling analysis of coated and layered materials

María P. Mateo, Luisa M. Cabalín, and Javier Laserna  »View Author Affiliations

Applied Optics, Vol. 42, Issue 30, pp. 6057-6062 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance features of line-focused laser ablation for the characterization of interfaces in layered materials by laser-induced plasma spectrometry (LIPS) have been compared with the point-focusing method in terms of signal precision, signal-to-noise ratio, ablation rates, and surface sensitivity. In both optical configurations a pulsed Nd:YAG laser beam operating at 532 nm, with a homogeneous energy distribution (flattop laser), is used to generate point and microline plasmas on the sample surface. Subsequent light from the plasma is spectrally resolved and detected with an imaging spectrograph and an intensified charge-coupled-device detector that is binned along the slit-height direction. Line-focusing LIPS permits much higher laser power input while maintaining relatively low laser fluence, thus yielding better surface sensitivity and improved detection power. Values of the signal-to-noise ratio are improved by a factor of 6. In addition the ablation rate is 9 nm/pulse with the microline approach compared with 23 nm/pulse obtained with the point-focusing method. The results demonstrate that the microline-focusing approach is suitable for the depth analysis of coated and layered materials.

© 2003 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: January 23, 2003
Revised Manuscript: May 13, 2003
Published: October 20, 2003

María P. Mateo, Luisa M. Cabalín, and Javier Laserna, "Line-focused laser ablation for depth-profiling analysis of coated and layered materials," Appl. Opt. 42, 6057-6062 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000). [CrossRef]
  2. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001). [CrossRef]
  3. J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998). [CrossRef]
  4. J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997). [CrossRef]
  5. H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001). [CrossRef]
  6. P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001). [CrossRef]
  7. M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 52, 444–448 (1998). [CrossRef]
  8. J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998). [CrossRef]
  9. D. R. Anderson, C. W. McLeod, T. English, A. T. Smith, “Depth profile studies using laser-induced plasma emission spectrometry,” Appl. Spectrosc. 49, 691–701 (1995). [CrossRef]
  10. M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001). [CrossRef]
  11. L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000). [CrossRef]
  12. P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999). [CrossRef] [PubMed]
  13. L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001). [CrossRef]
  14. D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997). [CrossRef] [PubMed]
  15. L. St-Onge, “A mathematical framework for modeling the compositional depth profiles obtained by pulsed laser ablation,” J. Anal. At. Spectrom. 17, 1083–1089 (2002). [CrossRef]
  16. M. Ivanda, K. Furic, “Line focusing in micro-Raman spectroscopy,” Appl. Opt. 31, 6371–6375 (1992). [CrossRef] [PubMed]
  17. J. Ramsey, S. Ranganathan, R. L. McCreery, J. Zhao, “Performance comparisons of conventional and line-focused surface Raman spectrometers,” Appl. Spectrosc. 55, 767–773 (2001). [CrossRef]
  18. A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001). [CrossRef]
  19. K. Nakamoto, “Resonance Raman spectra and biological significance of high-valent iron (iv, v) porphyrins,” Coord. Chem. Rev. 226, 153–165 (2002). [CrossRef]
  20. J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001). [CrossRef]
  21. J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001). [CrossRef]
  22. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000). [CrossRef]
  23. W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).
  24. G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998). [CrossRef]
  25. N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000). [CrossRef]
  26. M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000). [CrossRef]
  27. M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002). [CrossRef]
  28. M. P. Mateo, L. M. Cabalín, J. J. Laserna, “Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat-top lasers,” Appl. Spectrosc. 57, 343–348 (2003). [CrossRef] [PubMed]
  29. L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited