OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6063–6071

Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples

Denis Menut, Pascal Fichet, Jean-Luc Lacour, Annie Rivoallan, and Patrick Mauchien  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 6063-6071 (2003)
http://dx.doi.org/10.1364/AO.42.006063


View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been applied mainly to bulk analysis of solids, liquids, and gases and less frequently for elemental microanalysis of solid surfaces. A micro-LIBS device devoted to analysis of the distribution of elements on surfaces is described. This device offers rapid access with a 3-µm spatial resolution to the microchemical structures of both conductive and nonconductive samples. Quantitative microchemical results of applications to ceramics are reported. By the use of a time-resolved acquisition spectrum, cerium in a uranium matrix was characterized with a cerium detection limit of 1.14%. Calibration curves obtained with manipulations during 1 year facilitated evaluations of reproducibility and repeatability. A 2% single-shot repeatability with a calibration reproducibility of ∼7% is reported.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic

History
Original Manuscript: January 20, 2003
Revised Manuscript: May 28, 2003
Published: October 20, 2003

Citation
Denis Menut, Pascal Fichet, Jean-Luc Lacour, Annie Rivoallan, and Patrick Mauchien, "Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples," Appl. Opt. 42, 6063-6071 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-6063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Noll, H. Bette, A. Brysh, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–650 (2001). [CrossRef]
  2. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–694 (2001). [CrossRef]
  3. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–724 (2001). [CrossRef]
  4. L. Moenke-Blankenburg, Laser Micro Analysis (Wiley, New York, 1989).
  5. L. S. Radziemski, D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  6. K. Song, Y. I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997). [CrossRef]
  7. R. E. Russo, “Laser ablation,” Appl. Spectrosc. 49, 14A–28A (1995). [CrossRef]
  8. S. A. Darke, J. F. Tyson, “Interaction of laser radiation with solid materials and its significance to analytical spectrometry,” J. Anal. At. Spectrom. 8, 145–209 (1993). [CrossRef]
  9. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001). [CrossRef]
  10. B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002). [CrossRef]
  11. P. Fichet, P. Mauchien, C. Moulin, “Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1111–1117 (1999). [CrossRef]
  12. N. André, C. Geertsen, J. L. Lacour, P. Mauchien, S. Sjöström, “UV laser optical emission spectrometry on aluminum alloys in air at atmospheric pressure,” Spectrochim. Acta Part B 49, 1363–1372 (1994). [CrossRef]
  13. L. Dudragne, Ph. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative detection of fluorine, chlorine, sulfur and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998). [CrossRef]
  14. T. Kim, C. T. Lin, Y. Yoon, “Compositional mapping by laser-induced breakdown spectroscopy,” J. Phys. Chem. B 102, 4284–4287 (1998). [CrossRef]
  15. H. J. Häkkänen, J. E. I. Korppi-Tommola, “UV-laser plasma study of elemental distribution of paper coatings,” Appl. Spectrosc. 49, 1721–1728 (1995). [CrossRef]
  16. J. M. Vadillo, S. Palanco, M. D. Romero, J. J. Laserna, “Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis,” Fresenius J. Anal. Chem. 255, 909–912 (1996).
  17. D. Romero, J. J. Laserna, “Surface and tomographic distribution of carbon impurities in photonic-grade silicon using laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 13, 557–560 (1998). [CrossRef]
  18. P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001). [CrossRef]
  19. P. Lucena, J. M. Vadillo, J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 17, 548–551 (2002). [CrossRef]
  20. I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999). [CrossRef]
  21. I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser-induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000). [CrossRef]
  22. D. Kossakovski, J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72, 4731–4737 (2000). [CrossRef] [PubMed]
  23. Commissariat a l’Energie Atomique, “Study of emission spectroscopy on laser produced plasma for localised multielemental analysis in solids with surface imaging,” (Commissariat a l’Energie Atomique, Saclay, France, 1996).
  24. C. Geertsen, J. L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996). [CrossRef]
  25. C. Fabre, M. C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002). [CrossRef]
  26. C. Fabre, M. C. Boiron, J. Dubessy, M. Cathelineau, D. A. Banks, “Palaeofluid chemistry of a single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman spectroscopy) of an Alpine fluid (Mont-Blanc),” Chem. Geol. 182, 249–264 (2002). [CrossRef]
  27. G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–698 (2002). [CrossRef]
  28. J. L. Lacour, V. Detalle, P. Mauchien, J. F. Wagner, “Elementary analysis device by optical emission spectrometry on laser produced plasma,” European patent00978635.5-2204 (10October2001).
  29. B. Sallé, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, C. Nouvellon, A. Semerok, “Laser ablation efficiency of metal samples with UV laser nanosecond pulses,” Appl. Surf. Sci. 138–139, 302–305 (1999). [CrossRef]
  30. C. Geersten, “Etude de la microablation laser à pression atmosphérique en vue de la cartographie élémentaire des solides,” Ph.D. dissertation (Ecole Polytechnique, Palaiseau, France, 1996).
  31. N. Andre, P. Mauchien, A. Semerok, “Process for elemental analysis by optical emission spectrometry on plasma produced by a laser in the presence of argon,” U.S. patent5,583,634 (10December1996).
  32. V. Detalle, “Analyse de l’homogénéité du combustible nucléaire MOX par spectrométrie d’emission optique sur plasma induit par laser (SEPIL),” Ph.D. dissertation (Claude Bernard-Lyon I-University, Lyon, France, 1999).
  33. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminium alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995). [CrossRef]
  34. B. C. Castle, K. Talabardon, B. W. Smith, J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998). [CrossRef]
  35. B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimisation of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001). [CrossRef]
  36. M. Neuilly, Modélisation et Estimation des Erreurs de Mesures (Lavoisier, Paris, 1993).
  37. M. Neuilly, Précision des Dosages des Traces (Lavoisier, Paris, 1993).
  38. J. I. Yun, R. Klenze, J. I. Kim, “Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt. I. Characterization and evaluation of the method,” Appl. Spectrosc. 56, 437–448 (2002). [CrossRef]
  39. U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. I. Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998). [CrossRef]
  40. I. B. Gornushkin, B. W. Smith, G. E. Potts, N. Omenetto, J. D. Winefordner, “Some consideration on the correlation between signal and background in laser-induced breakdown spectroscopy using single-shot analysis,” Anal. Chem. 71, 5447–5449 (1999). [CrossRef] [PubMed]
  41. G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001). [CrossRef]
  42. J. E. Carranza, D. W. Hahn, “Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 779–790 (2002). [CrossRef]
  43. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correction self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 339–353 (2002). [CrossRef]
  44. D. Bulajic, G. Cristoforetti, M. Corsi, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, S. Green, D. Bates, “Diagnostic of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project,” Spectrochim. Acta Part B 57, 1181–1192 (2002). [CrossRef]
  45. D. Menut, Ph. Le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environment survey by micro LIBS (µLIBS),” in Laser Induced Plasma, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 93–95.
  46. J. O. Caceres, J. Tornero Lopez, H. H. Telle, A. Gonzalez Urena, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001). [CrossRef]
  47. R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Palucci, M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta Part B 57, 1203–1218 (2002). [CrossRef]
  48. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001). [CrossRef]
  49. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited