OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6085–6093

Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry

William Pearman, Jon Scaffidi, and S. Michael Angel  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 6085-6093 (2003)
http://dx.doi.org/10.1364/AO.42.006085


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Use of dual-pulse laser-induced breakdown spectroscopy with an orthogonal spark orientation is presented as a technique for trace metal analysis in bulk aqueous solutions. Two separate Q-switched Nd:YAG lasers operating at their fundamental wavelengths are used to form a subsurface, laser-induced plasma in a bulk aqueous solution that is spectroscopically analyzed for the in situ detection of Ca, Cr, and Zn. Optimizing the key experimental parameters of proper spark alignment, gate delay (t d ), gate width (t b ), and interpulse timing (ΔT) allowed experimentally determined detection limits of the order of micrograms per milliliter and submicrograms per milliliter. We present supporting evidence of a sampling mechanism that involves the formation of a cavitation bubble with the first pulse (E1) followed by analysis of that bubble with a second pulse (E2). The plasma created by E2 contains the analytically relevant information from the aqueous sample and often represents >250-fold enhancement over a single laser pulse with energy equal to E1 alone.

© 2003 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic

History
Original Manuscript: February 20, 2003
Revised Manuscript: July 11, 2003
Published: October 20, 2003

Citation
William Pearman, Jon Scaffidi, and S. Michael Angel, "Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry," Appl. Opt. 42, 6085-6093 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-6085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).
  2. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23(3), 143–162 (1992). [CrossRef]
  3. F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002). [CrossRef]
  4. D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000). [CrossRef]
  5. S. M. Angel, D. N. Stratis, K. E. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001). [CrossRef] [PubMed]
  6. D. N. Stratis, K. E. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. T. Spellicy, eds., Proc. SPIE3853, 385–392 (1999). [CrossRef]
  7. D. N. Stratis, K. E. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000). [CrossRef]
  8. L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998). [CrossRef]
  9. D. C. S. Beddows, O. Samek, M. Liska, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461–1471 (2002). [CrossRef]
  10. L. J. Radziemski, “Review of analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994). [CrossRef]
  11. J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999). [CrossRef]
  12. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, “Trace element analysis in water by the laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105 (1997). [CrossRef]
  13. Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000), Chap. 3.
  14. X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000). [CrossRef]
  15. D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997). [CrossRef]
  16. D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).
  17. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001). [CrossRef]
  18. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197-198, 156–163 (2002). [CrossRef]
  19. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000). [CrossRef]
  20. M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000). [CrossRef]
  21. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001). [CrossRef]
  22. R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).
  23. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001). [CrossRef]
  24. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001). [CrossRef]
  25. J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001). [CrossRef]
  26. M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001). [CrossRef]
  27. Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000). [CrossRef]
  28. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999). [CrossRef]
  29. L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001). [CrossRef]
  30. P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001). [CrossRef]
  31. J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001). [CrossRef]
  32. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001). [CrossRef]
  33. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001). [CrossRef]
  34. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001). [CrossRef]
  35. A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001). [CrossRef]
  36. V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001). [CrossRef]
  37. Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001). [CrossRef]
  38. L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000). [CrossRef]
  39. M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000). [CrossRef]
  40. V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000). [CrossRef]
  41. L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001). [CrossRef]
  42. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001). [CrossRef]
  43. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras, A. González Ureña, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001). [CrossRef]
  44. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).
  45. O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).
  46. R. Nyga, W. Neu, “Double-pulse technique for optical-emission spectroscopy of ablation plasmas of samples in liquids,” Opt. Lett. 18, 747–749 (1993). [CrossRef] [PubMed]
  47. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001). [CrossRef]
  48. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000). [CrossRef]
  49. G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996). [CrossRef]
  50. G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998). [CrossRef]
  51. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996). [CrossRef]
  52. B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997). [CrossRef]
  53. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998). [CrossRef]
  54. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995). [CrossRef]
  55. C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).
  56. R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999). [CrossRef]
  57. S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000). [CrossRef]
  58. G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001). [CrossRef]
  59. A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999). [CrossRef]
  60. A. L. Moskvin, L. N. Moskvin, I. A. Ardashnikova, “Systems for continuous water quality control in a flow,” J. Anal. Chem. 55, 1173–1178 (2000). [CrossRef]
  61. “EPA ground water and drinking water current drinking water standards,” July2002, http://www.epa.gov/cgi-bin/epaprintonly.cgi .
  62. Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401–405 (1995). [CrossRef]
  63. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996). [CrossRef] [PubMed]
  64. R. E. Sturgeon, “Future of atomic spectrometry for environmental analysis,” J. Anal. At. Spectrom. 13(5), 351–361 (1998). [CrossRef]
  65. C. Jimenez, I. Marques, J. Bartroli, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors,” Anal. Chem. 68, 3801–3807 (1996). [CrossRef] [PubMed]
  66. E. Carasek, “A low cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples,” Talanta 51, 173–178 (2000). [CrossRef]
  67. H. Emons, B. Hüllenkremer, M. J. Schöning, “Detection of metal ions in aqueous solution by voltohmmetry,” Fresenius J. Anal. Chem. 369(1), 42–46 (2001). [CrossRef]
  68. S. B. Saban, R. B. Darling, “Multi-element heavy metal ion sensors for aqueous solutions,” Sens. Actuators B 61, 128–137 (1999). [CrossRef]
  69. H. A. Archontaki, S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42, 741–746 (1998). [CrossRef]
  70. J. S. Huang, C. B. Ke, L. S. Huang, K. C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta Part B 57, 35–48 (2002). [CrossRef]
  71. W. F. Ho, C. W. Ng, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength,” Appl. Spectrosc. 51(1), 87–91 (1997). [CrossRef]
  72. J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987). [CrossRef]
  73. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984). [CrossRef]
  74. R. Knopp, F. J. Scherbaum, J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius J. Anal. Chem. 355, 16–20 (1996). [CrossRef]
  75. T. Kitamori, T. Matsui, M. Sakagami, T. Sawada, “Laser breakdown spectrochemical analysis of microparticles in liquids,” Chem. Lett. 12, 2205–2208 (1989). [CrossRef]
  76. K. M. Lo, N. H. Cheung, “ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions,” Appl. Spectrosc. 56, 682–688 (2002). [CrossRef]
  77. O. Samek, M. Liska, J. Kaiser, V. T. Krzyzanek, H. H. Telle, G. Morris, D. C. S. Beddows, “Analysis of liquid samples using laser induced breakdown spectroscopy,” in Optical Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, H. Hu, G. Wang, eds., Proc. SPIE3504, 299–308 (1998). [CrossRef]
  78. V. N. Rai, F. Y. Yuch, J. P. Singh, “Study of laser-induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2094–2101 (2003). [CrossRef] [PubMed]
  79. M. Hosoda, A. Aoshima, T. Itoh, Y. Tsuchiya, “Enhancement of the laser breakdown of simple gaseous and liquid materials under intense picosecond double-pulse excitation,” Jpn. J. Appl. Phys. 38, 3567–3568 (1999). [CrossRef]
  80. R. L. Vander Wal, T. M. Ticich, J. R. West, P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999). [CrossRef]
  81. A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997). [CrossRef]
  82. B. Charfi, M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta. Part B 57, 1141–1153 (2002). [CrossRef]
  83. P. Fischet, A. Toussaint, J.-F. Wagner, “Laser-induced breakdown spectroscopy: a tool for analysis of different types of liquids,” Appl. Phys. A 69, (Suppl.) S591–S592 (1999).
  84. P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997). [CrossRef]
  85. T. Bundschuh, J.-I. Yun, R. Knopp, “Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S),” Fresenius J. Anal. Chem. 371, 1063–1069 (2001). [CrossRef]
  86. Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 5993–6001 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited