OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6107–6118

Laser-Induced Breakdown Spectroscopy at High Temperatures in Industrial Boilers and Furnaces

Linda G. Blevins, Christopher R. Shaddix, Shane M. Sickafoose, and Peter M. Walsh  »View Author Affiliations

Applied Optics, Vol. 42, Issue 30, pp. 6107-6118 (2003)

View Full Text Article

Acrobat PDF (331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3440) Lasers and laser optics : Laser-induced breakdown
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic

Linda G. Blevins, Christopher R. Shaddix, Shane M. Sickafoose, and Peter M. Walsh, "Laser-Induced Breakdown Spectroscopy at High Temperatures in Industrial Boilers and Furnaces," Appl. Opt. 42, 6107-6118 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
  2. P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331–381 (2002).
  3. X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
  4. M. Z. Martin, M. D. Cheng, and R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999).
  5. J. Sneddon and Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
  6. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Recent trends and the future of laser-induced plasma spectroscopy,” TrAC Trends Anal. Chem. 17, 453–461 (1998).
  7. K. Song, Y. I. Lee, and J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
  8. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
  9. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
  10. V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
  11. L. J. Radziemski and D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.
  12. D. A. Cremers and L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. (Marcel Dekker, New York, 1987), pp. 351–414.
  13. Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13, R103–R115 (2002).
  14. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
  15. P. M. Walsh, H. A. Johnsen, D. K. Ottesen, R. H. Christy, T. P. McGrath, B. Zimperman, S. E. Wien, and G. C. England, “Measurements of metallic elements in the exhaust from a stationary, natural-gas-fueled, lean-burn, spark-ignition engine using laser-induced breakdown spectroscopy and comparison with U.S. EPA Methods 201A and 202,” presented at the Air and Waste Management Association 94th Annual Conference, Orlando, Fla., 24–28 June 2001.
  16. S. G. Buckley, P. M. Walsh, D. W. Hahn, R. J. Gallagher, M. K. Misra, J. T. Brown, S. S. C. Tong, F. Quan, K. Bhatia, K. K. Koram, V. I. Hinery, and R. D. Moore, “Measurements of sodium in an oxygen-natural gas fired soda-lime-silica glass melting furnace,” Ceram. Eng. Sci. Proc. 21, 183–205 (2000).
  17. S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
  18. D. W. Hahn, K. R. Hencken, H. A. Johnsen, J. R. Ross, P. M. Walsh, R. H. Christy, and S. D. Ziman, “Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production,” in Emission Inventory: Living in a Global Environment (Air and Waste Management Association, Sewickley, Pa., 1999), Vol. II, pp. 1175–1193.
  19. H. S. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
  20. P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. Priebe, and D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
  21. D. W. Hahn, K. R. Hencken, and H. A. Johnsen, “Performance testing of a laser-induced breakdown spectroscopy (LIBS) based continuous metal emissions monitor at a pyrolytic waste treatment facility,” Rep. SAND97–8270 (Sandia National Laboratories, Livermore, Calif., 1997).
  22. D. W. Hahn, W. L. Flower, and K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
  23. J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Control Qual. 10, 247–258 (1997).
  24. L. W. Peng, W. L. Flower, K. R. Hencken, H. A. Johnsen, R. F. Renzi, and N. B. French, “A laser-based technique for continuously monitoring metal emissions from thermal waste treatment units,” Process Control Qual. 7, 39–49 (1995).
  25. W. Flower, L. Peng, C. Woods, N. Bergan French, K. Hencken, H. Johnsen, R. Renzi, and D. Trujillo, “A continuous emissions monitor for metals: field demonstration of a prototype probe,” Rep. SAND95–8540 (Sandia National Laboratories, Livermore, Calif., 1995).
  26. H. Zhang, J. P. Singh, F. Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617–1623 (1995).
  27. W. L. Flower, L. W. Peng, M. P. Bonin, N. B. French, H. A. Johnsen, D. K. Ottesen, R. F. Renzi, and L. V. Westbrook, “A laser-based technique to continuously monitor metal aerosol emissions,” Fuel Process. Technol. 39, 277–284 (1994).
  28. D. K. Ottesen, “Laser spark emission spectroscopy of individual coal particles,” in Advances in Coal Spectroscopy, H. L. C. Meuzelaar, ed. (Plenum, New York, 1992), pp. 91–118.
  29. D. K. Ottesen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission-spectroscopy for in-situ real-time monitoring of pulverized coal particle composition,” Energy Fuels 5, 304–312 (1991).
  30. D. K. Ottesen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, “Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition,” Rep. SAND90–8586 (Sandia National Laboratories, Livermore, Calif., 1990).
  31. D. K. Ottesen, J. C. F. Wang, and L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Appl. Spectrosc. 43, 967–976 (1989).
  32. D. K. Ottesen, J. C. F. Wang, and L. J. Radziemski, “Real-time laser spark spectroscopy of particulates in combustion environments,” Rep. SAND88–8862 (Sandia National Laboratories, Livermore, Calif., 1988).
  33. B. L. Chadwick and D. Body, “Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,” Appl. Spectrosc. 56, 70–74 (2002).
  34. D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
  35. L. L. Sloss and R. M. Davidson, “Rapid analysis of trace elements in coal utilisation,” Rep. IEA CCC/46 (International Energy Agency Coal Research, London, 2001).
  36. F. J. Wallis, B. L. Chadwick, and R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).
  37. D. R. Hardesty and D. K. Ottesen, “Optical diagnostics for in situ measurements in combustion environments containing coal particles,” Energy 12, 813–836 (1987).
  38. D. R. Hardesty, “An assessment of optical diagnostics for in situ measurements in high temperature coal combustion and conversion flows,” Rep. SAND84–8724 (Sandia National Laboratories, Livermore, Calif., 1984).
  39. U. Panne, R. Neuhauser, C. Haisch, H. Fink, and R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Appl. Spectrosc. 56, 375–380 (2002).
  40. C. Su, S. Feng, J. Singh, F. Yuen, J. Rigsby, D. Monts, and R. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  41. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
  42. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
  43. D. W. Hahn, K. R. Hencken, H. A. Johnsen, and W. L. Flower, “Method of improving instrument response,” U.S. patent 6,061,641 (9 May 2000).
  44. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30–48 (2000).
  45. K. R. Hencken and W. L. Flower, “Optical probe,” U.S. patent 5,953,120 (14 September 1999).
  46. R. H. Christy and S. D. Ziman, “Fine particulate matter: how dirty is clean combustion?” presented at the Fourth Society of Petroleum Engineers/Environmental Protection Agency Exploration and Production Environmental Conference, Austin, Tex., 28 February-3 March 1999.
  47. W. L. Flower and R. F. Renzi, “Method and apparatus for calibrating a particle emissions monitor,” U.S. patent 5,777,734 (7 July 1998).
  48. D. W. Hahn, “Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles,” Appl. Phys. Lett. 72, 2960–2962 (1998).
  49. D. K. Ottesen, “Detection of contaminants on electronic microcircuit substrates by laser spark emission spectroscopy,” Appl. Spectrosc. 46, 593–596 (1992).
  50. R. W. Schmieder, “Techniques and applications of laser spark spectroscopy,” Rep. SAND83–8618 (Sandia National Laboratories, Livermore, Calif., 1983).
  51. R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” Rep. SAND81–8886 (Sandia National Laboratories, Livermore, Calif., 1981).
  52. A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
  53. V. Detalle, R. Heon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
  54. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 839–850 (2001).
  55. S. Florek, C. Haisch, M. Okruss, and H. Becker-Ross, “A new, versatile echelle spectrometer relevant to laser induced plasma applications,” Spectrochim. Acta Part B 56, 1027–1034 (2001).
  56. P. Lindblom, “New compact echelle spectrographs with multichannel time-resolved recording capabilities,” Anal. Chim. Acta 380, 353–361 (1999).
  57. H. Bauer, F. Leis, and K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
  58. H. Becker-Ross and S. Florek, “Echelle spectrometers and charge-coupled devices,” Spectrochim. Acta Part B 52, 1367–1375 (1997).
  59. J. R. Ross, S. R. Birtola, and H. A. Johnsen, “Purge and cooling for the LIBS optical probe,” U.S. patent application (26 March 2002).
  60. S. Yalcin, D. R. Crosley, G. P. Smith, and G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
  61. S. Yalcin, D. R. Crosley, G. P. Smith, and G. W. Faris, “Spectroscopic characterization of laser-produced plasmas for in situ toxic metal monitoring,” Hazard. Waste Hazard. Mater. 13, 51–61 (1996).
  62. B. M. Jenkins, P. Thy, S. Q. Turn, L. G. Blevins, L. A. Jakeway, R. B. Williams, B. C. Wu, and L. L. Baxter, “Composition and microstructure of ash deposits from co-firing biomass and coal,” in BioEnergy 2002, J. Crockett and C. L. Peterson, eds. (Omnipress, Boise, Idaho, 2002), paper 2107.
  63. R. D. Moore and J. T. Brown, “Conversion of a large container furnace from regenerative firing to direct oxy-fuel combustion,” Ceram. Eng. Sci. Proc. 13, 18–24 (1992).
  64. R. H. Nilson, S. K. Griffiths, N. Yang, P. M. Walsh, M. D. Allendorf, B. Bugeat, O. Marin, K. E. Spear, and G. Pecoraro, “Analytical models for high-temperature corrosion of silica refractories in glass-melting furnaces,” Glass Sci. Technol. 76, 136–151 (2003).
  65. P. M. Walsh, R. D. Moore, J. Neufeld, L. Lemings, J. T. Brown, and K. T. Wu, “Sodium volatilization and silica refractory corrosion in an oxygen/natural-gas-fired soda-lime-silica glass melting furnace,” in Proceedings of the XIX International Congress on Glass (Society of Glass Technology, Sheffield, UK, 2001), Vol. 2, Extended Abstracts, pp. 134–135.
  66. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
  67. A. Gonzalez, M. Ortiz, and J. Campos, “Determination of sulfur-content in steel by laser-produced plasma-atomic emission-spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited