OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6119–6132

Single-Pollen Analysis by Laser-Induced Breakdown Spectroscopy and Raman Microscopy

Ana R. Boyain-Goitia, David C. S. Beddows, Ben C. Griffiths, and Helmut H. Telle  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 6119-6132 (2003)
http://dx.doi.org/10.1364/AO.42.006119


View Full Text Article

Acrobat PDF (346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of laser-induced breakdown spectroscopy to the analysis of single biological microparticles (bioaerosols) is described, exemplified here for a range of pollens. Spectra were recorded by exposure of the pollen to a single laser pulse from a Nd:YAG laser (λ = 1064 nm, Ep ~ 30 mJ). The intensities of the single-pulse laser-induced breakdown spectra fluctuated dramatically, but an internal signal calibration procedure was applied that referenced elemental line intensities to the carbon matrix of the sample (represented by molecular bands of CN and C2). This procedure allowed us to determine relative element concentration distributions for the different types of pollen. These pollens exhibited some distinct concentration variations, for both major and minor (trace) elements in the biomatrix, through which ultimately individual pollens might be identified and classified. The same pollen samples were also analyzed by Raman microscopy, which provided molecular compositional data (even with spatial resolution). These data allowed us to distinguish between biological and nonbiological specimens and to obtain additional classification information for the various pollen families, complementing the laser-induced breakdown spectroscopy measurement data.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
Ana R. Boyain-Goitia, David C. S. Beddows, Ben C. Griffiths, and Helmut H. Telle, "Single-Pollen Analysis by Laser-Induced Breakdown Spectroscopy and Raman Microscopy," Appl. Opt. 42, 6119-6132 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-6119


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. R. Jacobson and S. C. Morris, “The primary air pollutants—viable particles, their occurrence, sources and effects,” in Air Pollution, 3rd ed., A. C. Stern, ed. (Academic, New York, 1976).
  2. K. J. Whitby, “The physical characteristics of sulphur aerosols,” Atmos. Environ. 12, 135–159 (1978).
  3. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
  4. M. L. Laucks, G. Roll, G. Schweiger, and E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
  5. S. Mathias-Maser, “Primary biological aerosol particles: their significance, sources, sampling methods and size distribution in the atmosphere,” in Atmospheric Particles, R. M. Harrison and R. Van Grieken, eds. (Wiley, Chichester, UK, 1998).
  6. D. T. Suess and K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
  7. J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
  8. S. Sowa and K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
  9. W. C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed. (Wiley, New York, 1999).
  10. E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
  11. W. G. Murrey, “The elemental analysis of pollen using the technique of laser-induced breakdown spectroscopy,” internal project report (Department of Physics, University of Wales, Swansea, UK, 2002).
  12. A. W. Miziolek and A. C. Samuels, U.S. Army Research Laboratory, Aberdeen Proving Ground, Md. 21005 (personal communication, 2002).
  13. S. Morel, P. Adam, and J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).
  14. S. Morel, N. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
  15. A. C. Samuels, F. C. DeLucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS) of bacterial spores, molds, pollens, and proteins: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
  16. D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
  17. D. C. S. Beddows, “Addendum to ‘Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system, ’” Spectrochim. Acta B 58, 583–584 (2003).
  18. S. Bean, “Detection of heavy metal trace elements in tree samples,” internal project report (Department of Physics, University of Wales, Swansea, UK 2002).
  19. L. St-Onge, R. Sing, S. Béchard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).
  20. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
  21. O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, and H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, and O. S. Wolfbeis, eds., Proc. SPIE 3570, 263–271 (1998).
  22. P. J. Knowles, P. J. Hoy, and D. C. Cartwright, “The A 2∏-X 2+ and B 2+-X 2+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
  23. B. Schrader, H. H. Klump, K. Schenzel, and H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
  24. B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, and S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
  25. D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, and A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.
  26. H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
  27. Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, and G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.
  28. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited