OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 31 — Nov. 1, 2003
  • pp: 6267–6275

Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures

Masanori Koshiba and Kunimasa Saitoh  »View Author Affiliations


Applied Optics, Vol. 42, Issue 31, pp. 6267-6275 (2003)
http://dx.doi.org/10.1364/AO.42.006267


View Full Text Article

Enhanced HTML    Acrobat PDF (2659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a full-vector finite-element method, we calculate birefringence and dispersion in index-guiding photonic crystal fibers, also called holey fibers. Through real-model simulations the polarization-dependent dispersion in actual fiber structures is numerically demonstrated, for the first time to our knowledge. Furthermore the transverse-electric-field vector distributions in the fabricated holey fibers are also clarified for the two linearly polarized fundamental modes.

© 2003 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

History
Original Manuscript: February 18, 2003
Revised Manuscript: July 14, 2003
Published: November 1, 2003

Citation
Masanori Koshiba and Kunimasa Saitoh, "Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures," Appl. Opt. 42, 6267-6275 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-31-6267


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999). [CrossRef]
  2. T. A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, “Photonic crystal fibers: an endless variety,” IEICE Trans. Electron. E84-C, 585–592 (2001).
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  5. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic bandgap guidance in optical fiber,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  7. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett. 35, 63–64 (1999). [CrossRef]
  8. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriage, B. J. Mangan, T. A. Birks, P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000). [CrossRef]
  10. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanabe, M. Fujita, “High-speed bidirectional polarization division multiplexed optical transmission in ultralow-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett. 37, 1399–1401 (2001). [CrossRef]
  11. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  12. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  13. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  14. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvester, P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electron. Lett. 36, 53–55 (2000). [CrossRef]
  15. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  16. V. Finazzi, T. M. Monro, D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
  17. J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998). [CrossRef]
  18. A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999). [CrossRef]
  19. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000). [CrossRef]
  20. S. E. Barkou, J. Broeng, A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999). [CrossRef]
  21. J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000). [CrossRef]
  22. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998). [CrossRef]
  23. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999). [CrossRef]
  24. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999). [CrossRef]
  25. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000). [CrossRef]
  26. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001). [CrossRef]
  27. T. P. White, R. C. McPhedran, C. M. de Sterks, L. C. Botten, M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001). [CrossRef]
  28. F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000). [CrossRef]
  29. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite-element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).
  30. M. Koshiba, K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001). [CrossRef]
  31. K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite-element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002). [CrossRef]
  32. K. Saitoh, M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett. 14, 1291–1293 (2002). [CrossRef]
  33. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Perturbation analysis of dispersion properties in photonic crystal fibers through the finite-element method,” J. Lightwave Technol. 20, 1433–1442 (2002). [CrossRef]
  34. A. Cucinotta, S. Selleri, L. Vincetti, M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002). [CrossRef]
  35. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  36. K. Saitoh, M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003). [CrossRef]
  37. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express 7, 113–122 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  38. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, “Cladding-mode resonances in air–silica microstructure optical fibers,” J. Lightwave Technol. 18, 1084–1100 (2000). [CrossRef]
  39. F. Fogli, L. Saccomandi, P. Bassi, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  40. G. E. Town, J. T. Lizer, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044 (2001). [CrossRef]
  41. J. T. Lizier, G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001). [CrossRef]
  42. M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001). [CrossRef]
  43. M. Koshiba, Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000). [CrossRef]
  44. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001); erratum, Opt. Commun. 205, 227 (2002). [CrossRef]
  45. A. Suzuki, M. Tanaka, M. Fujita, H. Kubota, K. Suzuki, S. Kawanishi, “The dispersion properties in the long-wavelength region of the photonic crystal fiber,” in Proceedings of the 2002 IEICE General Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), p. 222.
  46. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, “Recent advances in low-loss holey fibers,” in Proceedings of the Seventh Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Yokohama, Japan, 2002), pp. 628–629.
  47. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  48. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited