OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 31 — Nov. 1, 2003
  • pp: 6321–6326

Design of a Grating-Based Thin-Film Filter for Broadband Spectropolarimetry

Donghyun Kim and Kieron Burke  »View Author Affiliations

Applied Optics, Vol. 42, Issue 31, pp. 6321-6326 (2003)

View Full Text Article

Acrobat PDF (148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a simple procedure for designing an integrated single-chip grating-based thin-film filter. A simulation from a rigorous coupled-wave analysis shows that structural adjustment based on the effective medium theory can achieve the desired integration without notable performance degradation. Our spectropolarimetric filter design maintains spectral filter characteristics, while its extinction ratio is significantly enhanced over the passband. The integrated spectropolarimetric filter can be a basis for building multispectral multipolarimetric filters for spectropolarimetry in remote-sensing applications.

© 2003 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers

Donghyun Kim and Kieron Burke, "Design of a Grating-Based Thin-Film Filter for Broadband Spectropolarimetry," Appl. Opt. 42, 6321-6326 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of a form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
  2. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A: Pure Appl. Opt. 1, 215–219(1999).
  3. T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686–688 (1997).
  4. E. Chen and S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
  5. W. G. Egan, “Proposed design of an imaging spectropolarimeter/photopolarimeter for remote sensing of earth resources,” Opt. Eng. 25, 1155–1159 (1986).
  6. L. D. Travis, “Remote sensing of aerosols with the Earth Observing Scanning Polarimeter,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE 1747, 154–164 (1992).
  7. B. H. Miles, E. R. Cespedes, and R. A. Goodson, “Polarization-based active/passive scanning system for minefield detection,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE 1747, 239–252 (1992).
  8. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstrahl, “Polaris II: an acousto-optic imaging spectropolarimeter for ground-based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE 1747, 92–103 (1992).
  9. H. Takami, H. Shiba, S. Sato, T. Yamashita, and Y. Kobayashi, “A near-infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
  10. P. Y. Deschamps, M. Herman, A. Podaire, and A. Ratier, “The POLDER instrument: mission objectives,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE 1747, 72–91 (1992).
  11. K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” in Targets and Backgrounds: Characterization and Representation V, W. R. Watkins, D. Clement, and W. R. Reynolds, eds., Proc. SPIE 3699, 49–57 (1999).
  12. D. B. Chenault and R. A. Chipman, “Infrared spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE 1166, 254–266 (1989).
  13. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimeter,” Opt. Eng. 34, 1558–1568 (1995).
  14. C. S. L. Chun, D. L. Fleming, W. A. Harvey, E. J. Torok, and F. A. Sadjadi, “Synthetic vision using polarization-sensitive, thermal imaging,” in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE 2736, 9–20 (1996).
  15. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
  16. R. M. A. Azzam and K. A. Giardina, “Photopolarimeter based on planar grating diffraction,” J. Opt. Soc. Am. A 10, 1190–1196 (1993).
  17. J. R. Maxwell and T. J. Rogne, “Advances in polarized infrared imaging, Part 1,” in Spectral Reflections IRIA Newsletter 97–01 (1997).
  18. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).
  19. E. Oliva, “Wedged double Wollaston, a device for single-shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589–592 (1997).
  20. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34, 8106–8109 (1995).
  21. D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single pixel design, fabrication, and characterization,” Appl. Opt. 42, 3756–3764 (2003).
  22. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  23. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
  25. W. A. Pliskin and H. S. Lehman, “Structural evaluation of silicon oxide films,” J. Electrochem. Soc. 112, 1013–1019 (1965).
  26. M. Herzberger, “Color correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959).
  27. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
  28. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited