OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 31 — Nov. 1, 2003
  • pp: 6327–6334

Application of Schlieren Interferometry to Temperature Measurements During Laser Welding of High-Density Polyethylene Films

João M. P. Coelho, Manuel A. Abreu, and F. Carvalho Rodrigues  »View Author Affiliations


Applied Optics, Vol. 42, Issue 31, pp. 6327-6334 (2003)
http://dx.doi.org/10.1364/AO.42.006327


View Full Text Article

Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Schlieren interferometry is found to be an alternative tool for temperature measurement during thermoplastic laser welding with regard to methods based on thermocouples or optical pyrometers. In fact, these techniques are not easily applied when materials to be processed have reduced thickness, negligible heat conduction, and low emissivity, as is the case of welding high-density polyethylene films with 10.6-μm CO2 laser radiation, even if the method reaches its applicability limit after approximately 1 s of the interaction process. The schlieren method provides the means and the results to probe the thermal variations of the laser-thermoplastic interaction on both the surface and the interface between the sample material and the air.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

Citation
João M. P. Coelho, Manuel A. Abreu, and F. Carvalho Rodrigues, "Application of Schlieren Interferometry to Temperature Measurements During Laser Welding of High-Density Polyethylene Films," Appl. Opt. 42, 6327-6334 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-31-6327


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. R. Barrault, G. R. Jones, and F. C. Rodrigues, “Practical arcing environments are plasma diagnostics,” in Proceedings of the Seventh Yugoslav Symposium and Summer School on the Physics of Ionized Gases, V. Vujnovic, ed. (IFIS, Zagrab, Yugoslavia, 1974), Vol. 1, pp. 701–807.
  2. B. VanDerWege, C. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” J. Opt. Lasers Eng. 31, 21–39 (1999).
  3. M. Pavelek and E. Janotkova, “Interferometric research of heat transfer at air jet from ventilating outlets,” in Proceedings of the Sixth International Symposium Ventilation 2000, S. Hiltumen, ed. (Finnish Institute of Occupational Health, Helsinki, Finland, 2000), Vol. 2, pp. 179–181, http://dt.fme.vutbr.cz/~pavelek/00fin-m.doc.
  4. M. Pavelek and E. Janotkova, “Research of dynamic temperature fields by means of Mach-Zender interferometer,” in Proceedings of the International Congress of Chemical and Process Engineering, CHISA ’98 (Process Engineering, Prague, Czech Republic, 1998), Vol. 4, paper P1.146, http://dt.fme.vutbr.cz/~pavelek/98CHISAm.doc.
  5. Reeta Vyas and R. Gupta, “Photothermal lensing spectroscopy in a flowing medium: theory,” Appl. Opt. 27, 4701–4711 (1988).
  6. J. Rienitz, “Schlieren experiment 300 years ago,” in Selected Papers on Schlieren Optics, J. R. Mayer-Arendt, ed., Vol. MS61 of SPIE Milestone Series(SPIE, Bellingham, Wash., 1992), pp. 10–12.
  7. J. Araújo Silva and A. Fernandes Arriegas, Controlo de qualidade em óptica ocular (M. F. C. R., Lda, Lisbon, 1992).
  8. Daniel Malacara, Optical Shop Testing (Wiley, New York, 1992).
  9. H. Schreiber and J. Schwider, “Lateral shearing interferometer based on two Ronchi phase gratings in series,” Appl. Opt. 36, 5321–5324 (1997).
  10. S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” J. Opt. Lasers Eng. 25, 1–12 (1996).
  11. F. C. Rodrigues, “Optical diagnostics—high current arcs,” Ph.D. dissertation (University of Liverpool, Liverpool, UK, 1974).
  12. E. B. Temple, “Quantitative measurement of gas density by means of light interference in a schlieren system,” J. Opt. Soc. Am. 47, 91–100 (1957).
  13. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, Berlin, 2001).
  14. R. Bracewell, The Fourier Transform and Its Applications, 3rd ed.(Mc-Graw-Hill, New York, 1999).
  15. A. K. Agrawal, B. W. Albers, and D. W. Griffin, “Abel inversion of deflectometric measurements in dynamic flows,” Appl. Opt. 38, 3394–3398 (1999).
  16. M. R. Teixeira, “Processos atómicos em descargas luminescentes de cátodo oco,” Ph.D. dissertation (Universidade de Lisboa, Lisbon, 1983).
  17. M. Heitor, P. Ferrão, A. Caldeira-Pires, D. Correia, and P. Maia, “On the development and implementation of a 3D tomographic sensor on an unconfined laboratory combustion system,” Basic Research in Industrial Technologies—European Research on Advanced Materials Project BE95/1708—Clean Glass Instituto Superior Técnico Technical Report (Instituto Superior Técnico, Lisbon, 1999), http://in3.dem.ist.utl.pt/publications/PAPERS/ifrf_report.pdf.
  18. K. Green, M. C. Borrás, P. P. Woskov, G. I. Flores III, K. Hadidi, and P. Thomas, “Electronic excitation temperatures profiles in an air microwave torch,” Plasma Science and Fusion Center (MIT, Cambridge, Mass., 2001), http://www.psfc.mit.edu/library/01JA/01JA005/01JA005_full.pdf.
  19. P. Ben-Abdallah, M. Sakami, V. Le Dez, J. B. Saulnier, and A. Charette, “Optical remote sensing inside an inhomogeneous axisymetric medium: the absorption field measurement,” Appl. Opt. 39, 411–417 (2000).
  20. L. Ciotti, “Inversion of the Abel equation for toroidal density distributions,” Astrophys. Lett. Commun. 40, 85–93 (2000).
  21. Laboratory for Laser Energetics, “Abel inversion of emission and backlighting images,” LLE Rev. 66, 66–72 (1996), http://www.lle.rochester.edu/pub/review/v66/v66-abel.pdf.
  22. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996), Chap. 1.
  23. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
  24. Zemax—Optical Design Program User’s Guide (Focus Software Inc., Tucson, Ariz., 2001). See Ref. 25.
  25. J. E. Decker and J. R. Pekelsky, “Gauge block calibration by optical interferometry at the National Research Council of Canada,” NRC Internal Report 40002 (NRC, 1997), pp. 6–7.
  26. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited