OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 31 — Nov. 1, 2003
  • pp: 6382–6387

Spectroscopic Ellipsometry of Metal Phthalocyanine Thin Films

Aleksandra B. Djurišić, Chung Yin Kwong, Tsz Wai Lau, Zheng Tong Liu, Hoi Sing Kwok, Lillian Sze Man Lam, and Wai Kin Chan  »View Author Affiliations

Applied Optics, Vol. 42, Issue 31, pp. 6382-6387 (2003)

View Full Text Article

Acrobat PDF (133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical functions of cobalt phthalocyanine, nickel phthalocyanine (NiPc), and iron phthalocyanine (FePc) have been determined by use of spectroscopic ellipsometry in the spectral range 1.55–4.1 eV (300–800 nm). The samples were prepared by evaporation onto glass and silicon substrates. The optical functions were determined by point-to-point fit. Absorption spectra were also measured. The index-of-refraction data for NiPc and FePc are reported for the first time to our knowledge. Good agreement with the experimental spectra was obtained for all three materials.

© 2003 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.4890) Materials : Organic materials
(310.6860) Thin films : Thin films, optical properties

Aleksandra B. Djurišić, Chung Yin Kwong, Tsz Wai Lau, Zheng Tong Liu, Hoi Sing Kwok, Lillian Sze Man Lam, and Wai Kin Chan, "Spectroscopic Ellipsometry of Metal Phthalocyanine Thin Films," Appl. Opt. 42, 6382-6387 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Wöhrle, L. Kreienhoop, and D. Schlettwein, “Phthalocyanines and related macrocycles in organic photovoltaic junctions,” in Phthalocyanines: Properties and Applications, C. C. Leznoff and A. B. P. Lever, eds. (VCH, New York, 1996), pp. 219–284.
  2. P. Peumans, V. Bulović, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett. 76, 2650–2652 (2000).
  3. M. Pfeiffer, A. Beyer, B. Plönings, A. Nollau, T. Fritz, K. Leo, D. Schlettvein, S. Hiller, and D. Wöhrle, “Controlled p-doping of pigment layers by cosublimation: basic mechanisms and implications for their use in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 63, 83–99 (2000).
  4. Z. Bao, A. J. Lovinger, and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett. 69, 3066–3068 (1996).
  5. J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
  6. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer,” Appl. Phys. Lett. 78, 410–412 (2001).
  7. A. Fujii, Y. Ohmori, and K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film,” IEEE Trans. Electron Devices 44, 1204–1207 (1997).
  8. T. Nagasawa, K. Murakami, and K. Watanabe, “Improvement in NO2-sensing characteristics of alpha-copper phthalocyanine thin films by the deposition on the hydrofluoric acid-treated glass substrates,” Mol. Cryst. Liq. Cryst. 316, 389–392 (1998).
  9. M. I. Newton, T. K. H. Starke, M. R. Willis, and G. McHale, “NO2 detection at room temperature with copper phthalocyanine thin film devices,” Sens. Actuators B 67, 307–311 (2000).
  10. T. Fritz, J. Hahn, and H. Böttcher, “Determination of the optical constants of evaporated dye layers,” Thin Solid Films 170, 249–257 (1989).
  11. B. H. Schechtman and W. E. Spicer, “Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films,” J. Mol. Spectrosc. 33, 28–48 (1970).
  12. M. K. Debe, “Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine,” J. Vac. Sci. Technol. A 10, 2816–2821 (1992).
  13. A. Ritz and H. Lüth, “The electronic structure of GaP (110) and Cu-phthalocyanine overlayers studied by ellipsometry,” Appl. Phys. A 31, 75–80 (1983).
  14. Q. Chen, D. Gu, and F. Gan, “Ellipsometric spectra of cobalt phthalocyanine films,” Physica B 212, 189–194 (1995).
  15. E. A. Lucia and F. D. Verderame, “Spectra of polycrystalline phthalocyanines in the visible region,” J. Chem. Phys. 48, 2674–2681 (1968).
  16. H. Laurs and G. Heiland, “Electrical and optical properties of phthalocyanine films,” Thin Solid Films 149, 129–142 (1987).
  17. A. T. Davidson, “The effect of the metal atom on the absorption spectra of phthalocyanine films,” J. Chem. Phys. 77, 168–172 (1982).
  18. L. Edwards and M. Gouterman, “Porphyrins. XV. Vapor absorption spectra and stability: phthalocyanines,” J. Mol. Spectrosc. 33, 292–310 (1970).
  19. P. E. Fielding and A. G. MacKay, “Electrical conduction in the phthalocyanines. I. Optical properties,” Aust. J. Chem. 17, 750–758 (1964).
  20. A. Schmidt, L. K. Chau, A. Back, and N. Armstrong, “Epitaxial phthalocyanine ultrathin films grown by organic molecular beam epitaxy (OMBE),” in Phthalocyanines: Properties and Applications, C. C. Leznoff and A. B. P. Lever, eds., (VCH, New York, 1996), pp. 307–341.
  21. H. Hoshi, A. J. Dann, and Y. Maruyama, “The structure and properties of phthalocyanine films grown by the molecular-beam epitaxy technique. II. Ultraviolet/visible spectroscopic study,” J. Appl. Phys. 67, 1845–1849 (1990).
  22. B. Resel, M. Ottmar, M. Hanack, J. Keckes, and B. Leising, “Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates,” J. Mater. Res. 15, 934–939 (2000).
  23. N. Uyeda, M. Ashida, and E. Suito, “Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated on cleaved face of mica,” J. Appl. Phys. 36, 1453–1460 (1965).
  24. H. Wachtel, J. C. Wittmann, B. Lotz, M. A. Petit, and J. J. Andre, “Anisotropic spin transport in oriented lithium phthalocyanine thin films,” Thin Solid Films 250, 219–231 (1994).
  25. M. Brinkmann, J. C. Wittmann, C. Chaumont, and J. J. Andre, “Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders,” Thin Solid Films 292, 192–203 (1997).
  26. O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, V. Melev, and J. Schreiber, “Studies on phase transformations of Cu phthalocyanine thin films,” J. Mater. Sci. Mater. Electron. 11, 331–346 (2000).
  27. J. H. Sharp and M. Lardon, “Spectroscopic characterization of a new polymorph of metal free phthalocyanine,” J. Phys. Chem. 72, 3230–3235 (1968).
  28. S. M. Bayliss, S. Heutz, G. Rumbles, and T. S. Jones, “Effect of annealing on the properties of thin films of free base phthalocyanine and perylene-3, 4, 9, 10 tetracarboxylic dianhydride deposited by organic molecular beam deposition,” Mater. Res. Soc. Symp. Proc. 560, 71–74 (1999).
  29. F. Iwatsu, T. Kobayashi, and N. Uyeda, “Solvent effects on crystal growth and transformation of zinc phthalocyanine,” J. Phys. Chem. 84, 3223–3230 (1980).
  30. F. Iwatsu, “Size effects on the alpha–beta transformation of phthalocyanine crystals,” J. Phys. Chem. 92, 1678–1681 (1988).
  31. S. I. Shihub and R. D. Gould, “Studies of phase transformations in some metal phthalocyanine thin films using measurements of current as a function of temperature,” Thin Solid Films 290–291, 390–394 (1996).
  32. S. M. Bayliss, S. Heutz, R. Cloots, R. L. Middleton, G. Rumbles, and T. S. Jones, “Templating effects in the growth of metal-free phthalocyanine polymorphic double layers,” Adv. Mater. 12, 202–206 (2000).
  33. M. K. Debe, R. J. Poirier, and K. K. Kam, “Organic-thin-film-induced molecular epitaxy from the vapor phase,” Thin Solid Films 197, 335–347 (1991).
  34. M. Komiyama, Y. Sakakibara, and H. Hirai, “Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition,” Thin Solid Films 151, L109–L110 (1987).
  35. P. S. Vincett, Z. D. Popovic, and D. McIntyre, “A novel structural singularity in vacuum-deposited thin films: the mechanism of critical optimization of thin film properties,” Thin Solid Films 82, 357–376 (1981).
  36. M. A. Barrett, Z. Borkowska, M. W. Humphreys, and R. Parsons, “Ellipsometry of thin films of copper phthalocyanine,” Thin Solid Films 28, 289–302 (1975).
  37. D. E. Aspnes, “Precision bounds to ellipsometer systems,” Appl. Opt. 14, 1131–1136 (1975).
  38. A. B. Djurišić, A. D. Rakić, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–48903 (1997).
  39. J. Märtensson and H. Arwin, “Applications of derivative line-shape fitting to ellipsometric spectra of thin films of metal-substituted phthalocyanines,” Thin Solid Films 205, 252–257 (1991).
  40. A. B. Djurišić, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
  41. B. Masenelli, S. Callard, A. Gagnaire, and J. Joseph, “Fabrication and characterization of organic semiconductor-based microcavities,” Thin Solid Films 364, 264–268 (2000).
  42. Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M. Li, S. Y. Shen, and D. H. Huang, “Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (VOPc) films fabricated by vacuum deposition,” Appl. Phys. A 66, 569–573 (1998).
  43. P. N. Day, Z. Wang, and R. Pachter, “Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution,” Thermochem. Acta 455, 33–50 (1998).
  44. J. Godlewski, J. Kalinowski, S. Stizza, I. Davoli, and R. Bernardini, “Asymmetries in the optical properties of vacuum-deposited organic films illuminated at the substrate and non-substrate surfaces,” Thin Solid Films 146, 115–132 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited