OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6569–6577

Differential Laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements

Robert T. Menzies and David M. Tratt  »View Author Affiliations


Applied Optics, Vol. 42, Issue 33, pp. 6569-6577 (2003)
http://dx.doi.org/10.1364/AO.42.006569


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the spectroscopic requirements for a laser absorption spectrometer (LAS) approach to high-precision carbon dioxide (CO2) measurements in the troposphere. Global-scale, high-precision CO2 measurements are highly desirable in an effort to improve understanding and quantification of the CO2 sources and sinks and their impact on global climate. We present differential absorption sounding characteristics for selected LAS transmitter laser wavelengths, emphasizing the effects of atmospheric temperature profile uncertainties. Candidate wavelengths for lower-troposphere measurements are identified in the CO2 bands centered near 1.57, 1.60, and 2.06 μm.

© 2003 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: April 28, 2003
Revised Manuscript: August 11, 2003
Published: November 20, 2003

Citation
Robert T. Menzies and David M. Tratt, "Differential Laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements," Appl. Opt. 42, 6569-6577 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-33-6569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Arrhenius, “On the influence of carbonic acid in the air upon the temperature of the ground,” Philos. Mag. 41, 237–276 (1896).
  2. D. M. Etheridge, L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, V. I. Morgan, “Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn,” J. Geophys. Res. 101, 4115–4128 (1996). [CrossRef]
  3. J. L. Sarmiento, S. C. Wofsy, A U.S. Carbon Cycle Science Plan (U.S. Global Change Research Program, Washington, D.C., 1999).
  4. P. Bousquet, P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, P. P. Tans, “Regional changes in carbon dioxide fluxes of land and oceans since 1980,” Science 290, 1342–1346 (2000). [CrossRef] [PubMed]
  5. T. J. Conway, P. P. Tans, L. S. Waterman, K. W. Thoning, “Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network,” J. Geophys. Res. 99, 22831–22855 (1994). [CrossRef]
  6. R. T. Menzies, M. T. Chahine, “Remote sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13, 2840–2849 (1974). [CrossRef] [PubMed]
  7. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 20, 545–552 (1981). [CrossRef] [PubMed]
  8. A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984). [CrossRef]
  9. T. Aoki, T. Aoki, M. Fukabori, “Path-radiance correction by polarization observation of Sun glint glitter for remote measurements of tropospheric greenhouse gases,” Appl. Opt. 41, 4945–4957 (2002). [CrossRef] [PubMed]
  10. D. M. O’Brien, P. J. Rayner, “Global observations of the carbon budget: II. CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2,” J. Geophys. Res. 107D, 18, 10.1029/2001JD000617 (2002).
  11. B. T. Tolton, D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 1305–1313 (2001). [CrossRef]
  12. Z. Kuang, J. Margolis, G. Toon, D. Crisp, Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 10.1029/2001GL014298 (2002).
  13. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWK (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  14. D. P. Edwards, “Atmospheric transmittance and radiance calculations using line-by-line computer models,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 94–116 (1988).
  15. H. I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976). [CrossRef]
  16. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991). [CrossRef] [PubMed]
  17. R. M. Measures, ed., Laser Remote Chemical Analysis (Wiley, New York, 1988).
  18. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (1-120 km),” AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  19. J. B. Abshire, M. A. Krainak, X. Sun, A. E. Andrews, G. J. Collatz, J. F. Burris, H. Riris, G. Allan, G. Duerksen, A. Yu, A. M. Gates, “Laser sounder approach for measuring atmospheric CO2 from orbit,” in Proceedings of the Third Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, Greenbelt, Md., 2003).
  20. R. T. Menzies, D. M. Tratt, M. P. Chiao, C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” presented at the 11th Coherent Laser Radar Conference, Malvern, UK, 1–6 July 2001.
  21. G. D. Spiers, R. T. Menzies, D. M. Tratt, M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, Greenbelt, Md., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited