OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6605–6612

Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding

Hideki Yokoi, Tetsuya Mizumoto, and Yuya Shoji  »View Author Affiliations

Applied Optics, Vol. 42, Issue 33, pp. 6605-6612 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding are proposed. The optical nonreciprocal devices are composed of a magneto-optic waveguide with a magnetic garnet/Si/SiO2 structure. Nonreciprocal characteristics are obtained by an evanescent field penetrating into the upper magnetic garnet cladding layer. Several kinds of the optical nonreciprocal device are investigated with the magneto-optic waveguide and designed at a wavelength of 1.55 μm. As a preliminary experiment, wafer bonding between Gd3Ga5O12 and Si was studied. Wafer bonding was successfully achieved with heat treatment at 220 °C in H2 ambient.

© 2003 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3240) Optical devices : Isolators
(250.5300) Optoelectronics : Photonic integrated circuits

Original Manuscript: February 10, 2003
Revised Manuscript: May 27, 2003
Published: November 20, 2003

Hideki Yokoi, Tetsuya Mizumoto, and Yuya Shoji, "Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding," Appl. Opt. 42, 6605-6612 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Razeghi, P.-L. Meunier, P. Maurel, “Growth of GaInAs-InP multiquantum wells on garnet (GGG = Gd3Ga5O12) substrate by metalorganic chemical vapor deposition,” J. Appl. Phys. 59, 2261–2263 (1986). [CrossRef]
  2. T. Mizumoto, Y. Shingai, Y. Miyamoto, Y. Naito, “Crystal growth of InP on a Gd3Ga5O12 substrate by organometallic chemical vapor deposition,” Jpn. J. Appl. Phys. 29, 53–57 (1990). [CrossRef]
  3. Y.-Q. Li, M. Cherif, J. Huang, W. Liu, Q. Chen, “Metalorganic chemical vapor deposition of magneto-optic Ce:YIG thin films,” Mater. Res. Soc. Symp. Proc. 517, 449–461 (1998). [CrossRef]
  4. E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987). [CrossRef]
  5. C. A. Desmond-Colinge, U. Gösele, “Wafer-bonding and thinning technologies,” MRS Bull. 23, 30–34 (1998).
  6. H. Yokoi, T. Mizumoto, K. Maru, Y. Naito, “Direct bonding between InP and rare earth iron garnet grown on Gd3Ga5O12 substrate by liquid phase epitaxy,” Electron. Lett. 31, 1612–1613 (1995). [CrossRef]
  7. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39, 6158–6164 (2000). [CrossRef]
  8. H. Yokoi, T. Mizumoto, K. Sakurai, T. Sakai, T. Ohtsuka, Y. Nakano, “Optical isolator with AlInAs-oxide cladding layer employing nonreciprocal radiation mode conversion,” in Technical Digest of Eighth Microoptics Conference, K. Kuroda, ed. (The Japan Society of Applied Physics, Tokyo, 2001), pp. 170–172.
  9. H. Yokoi, T. Mizumoto, H. Iwasaki, “Nonreciprocal TE–TM mode converter with semiconductor guiding layer,” Electron. Lett. 38, 1670–1672 (2002). [CrossRef]
  10. J. P. Castéra, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton-Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977). [CrossRef]
  11. K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988). [CrossRef]
  12. B. N. Kurdi, D. G. Hall, “Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures,” Opt. Lett. 13, 175–177 (1988). [CrossRef] [PubMed]
  13. K. Izumi, M. Doken, H. Ariyoshi, “C.M.O.S. devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon,” Electron. Lett. 14, 593–594 (1978). [CrossRef]
  14. J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, 78–80 (1986). [CrossRef]
  15. T. Yonehara, K. Sakaguchi, N. Sato, “Epitaxial layer transfer by bond and etch back of porous Si,” Appl. Phys. Lett. 64, 2108–2110 (1994). [CrossRef]
  16. M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31, 1201–1202 (1995). [CrossRef]
  17. J. Schmidtchen, A. Splett, B. Schüppert, K. Petermann, “Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991). [CrossRef]
  18. A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998). [CrossRef]
  19. M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988). [CrossRef]
  20. T. Shintaku, T. Uno, M. Kobayashi, “Magneto-optic channel waveguide in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74, 4877–4881 (1993). [CrossRef]
  21. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, N. Kaida, Y. Nakano, “Feasibility of integrated optical isolator with semiconductor guiding layer fabricated by wafer direct bonding,” IEE Proc. Optoelectron. 146, 105–110 (1999). [CrossRef]
  22. T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, “Verification of waveguide-type optical circulator operation,” Electron. Lett. 26, 199–200 (1990). [CrossRef]
  23. S. Ando, T. Sawada, Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29, 2143–2145 (1993). [CrossRef]
  24. N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, Y. Inoue, “A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit,” J. Lightwave Technol. 14, 2537–2546 (1996). [CrossRef]
  25. M. Schlak, H. P. Nolting, P. Albrecht, W. Döldissen, D. Franke, U. Niggebrügge, F. Schmitt, “Integrated-optic polarization converter on (001)-InP substrate,” Electron. Lett. 22, 883–885 (1986). [CrossRef]
  26. T. Koster, P. V. Lambeck, “Passive polarization converter in SiON technology,” J. Lightwave Technol. 19, 876–883 (2001). [CrossRef]
  27. K. Mertens, B. Scholl, H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13, 2087–2092 (1995). [CrossRef]
  28. Y. Bäcklund, K. Hermansson, L. Smith, “Bond-strength measurements related to silicon surface hydrophilicity,” J. Electrochem. Soc. 139, 2299–2301 (1992). [CrossRef]
  29. H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999). [CrossRef]
  30. H. Yokoi, T. Mizumoto, K. Maru, Y. Naito, “Improved heat treatment for wafer direct bonding between semiconductors and magnetic garnets,” Jpn. J. Appl. Phys. 36, 2784–2787 (1997). [CrossRef]
  31. H. Yokoi, T. Mizumoto, “Magnetooptic waveguide with SiO2 cladding layer integrated on InP substrate by wafer direct bonding,” Jpn. J. Appl. Phys. 36, 7230–7232 (1997). [CrossRef]
  32. M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, S. Monfray, “Silicon-on-nothing (SON)—an innovative process for advanced CMOS,” IEEE Trans. Electron Devices 47, 2179–2187 (2000). [CrossRef]
  33. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato, M. Itoh, “Hybrid integrated 4 × 4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit,” Electron. Lett. 34, 986–987 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited