OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6621–6629

Generalized Lorenz-Mie Theory for a Spheroidal Particle with Off-Axis Gaussian-Beam Illumination

Yingping Han, Gerard Gréhan, and Gerard Gouesbet  »View Author Affiliations


Applied Optics, Vol. 42, Issue 33, pp. 6621-6629 (2003)
http://dx.doi.org/10.1364/AO.42.006621


View Full Text Article

Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The beam-shape coefficients of arbitrary off-axis Gaussian beams in spheroidal coordinates are evaluated with a generalized Lorenz-Mie theory. The light-scattering properties of absorbing and nonabsorbing homogeneous spheroidal particles, such as the angular distribution of scattered intensity for a wide range of particles sizes and different complex refractive indices versus the magnitude and location of the beam waist, are investigated.

© 2003 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.4020) Scattering : Mie theory

Citation
Yingping Han, Gerard Gréhan, and Gerard Gouesbet, "Generalized Lorenz-Mie Theory for a Spheroidal Particle with Off-Axis Gaussian-Beam Illumination," Appl. Opt. 42, 6621-6629 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-33-6621


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
  2. G. Gouesbet, “Interaction between infinite cylinders and an arbitrarily shaped beam,” Appl. Opt. 36, 4292–4304 (1997).
  3. L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).
  4. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrarily shaped beams in elliptical cylinder coordinates, by using a plane-wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
  5. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
  6. S. Nag and B. P. Sinha, “Electromagnetic plane wave scattering by a system of two uniformly lossy dielectric prolate spheroids in arbitrary orientation,” IEEE Trans. Antennas Propag. 43, 322–327 (1995).
  7. T. G. Tsuei and P. W. Barber, “Information content of the scattering matrix for spheroidal particles,” Appl. Opt. 24, 2391–2396 (1985).
  8. J. P. Barton and D. R. Alexander, “Electromagnetic fields for an irregularly shaped, near-spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 69, 7973–7986 (1991).
  9. B. P. Sinha and R. H. Hacphie, “Electromagnetic scattering by prolate spheroids for a plane wave with arbitrary polarization and angle of incidence,” Radio Sci. 12, 171–184 (1997).
  10. J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).
  11. G. Gouesbet, B. Maheu, and G. Gréhan, “The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center,” J. Opt. Paris 16, 239–245 (1985).
  12. G. Gouesbet, “Validity of the localized approximation for arbitrarily shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).
  13. Y. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
  14. Y. Han and Z. S. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A: Pure Appl. 4, 74–77 (2002).
  15. C. Flammer, Spheroidal Wave Functions (Stanford U. Press, Stanford, Calif., 1957).
  16. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
  17. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
  18. D. J. Wielaard, M. I. Mishchenko, A. Macke, and B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing, and weakly absorbing nonspherical particles and comparison with geometrical optics approximation,” Appl. Opt. 36, 4305–4313 (1997).
  19. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 1999), pp. 3–27.
  20. C. F. Bohren and D. R. Huffman, Absortion and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 397–399.
  21. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beam,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
  22. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beam,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).
  23. G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).
  24. G. Gouesbet and G. Grehan, “Generalized Lorenz-Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
  25. G. Gouesbet and G. Grehan, “Generalized Lorenz-Mie theories, from past to future,” Atomization Sprays 10, 3–5, 277–333 (2000).
  26. J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 6471–8473 (1995).
  27. J. P. Barton, “Internal and near-surface electromagnetic fields for a layered spheroid with arbitrary illumination,” Appl. Opt. 40, 3598–3607 (2001).
  28. J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. A 19, 2429–2435 (2002).
  29. Y. Han and Z. S. Wu, “The expansion coefficients of a spheroidal particle illuminated by a Gaussian beam,” IEEE Trans. Antennas Trans. 49, 615–620 (2001).
  30. K. F. Ren, G. Grehan, and G. Gouesbet, “Localized approximation of generalized Lorenz-Mie theory: faster algorithm for computation of beam shape coefficient gnm,” Part. Part. Charact. 9, 144–150 (1992).
  31. A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).
  32. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  33. S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979).
  34. S. Asano and M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
  35. Y. Han and Z. S. Wu, “Discussion of the boundary condition forelectromagnetic scattering by spheroidal particles,” Acta Phys. Sin. 49, 57–60 (2000).
  36. Y. Han, L. Méès, K. F. Ren, G. Gouesbet, S. Z. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field,” Opt. Commun. 210, 1–9 (2002).
  37. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–117 (1991).
  38. S. Zhang and J. Jin, Computation of Special Functions (Wiley, New York, 1996).
  39. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited