OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6645–6649

Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor

Yutaka Yoshikawa, Takeshi Umeki, Takuro Mukae, Yoshio Torii, and Takahiro Kuga  »View Author Affiliations

Applied Optics, Vol. 42, Issue 33, pp. 6645-6649 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple modulation-free technique to stabilize a laser frequency to the Doppler-free spectra of an atomic vapor. Polarization spectroscopy with use of a balanced polarimeter allows us to obtain a background-free dispersion signal suitable for high-speed and robust frequency stabilization. We employed the method to the 5S1/2F = 2 → 5P3/2F′ = 3 transition of 87Rb atoms. The achieved feedback bandwidth was approximately 100 kHz, and an efficient suppression of the frequency noise in a laboratory environment was attained.

© 2003 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: April 9, 2003
Revised Manuscript: August 12, 2003
Published: November 20, 2003

Yutaka Yoshikawa, Takeshi Umeki, Takuro Mukae, Yoshio Torii, and Takahiro Kuga, "Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor," Appl. Opt. 42, 6645-6649 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  2. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), chap. 14.
  3. U. Tanaka, T. Yabuzaki, “Frequency stabilization of diode laser using external cavity and Doppler-free atomic spectra,” Jpn. J. Appl. Phys. 33, 1614–1622 (1994). [CrossRef]
  4. T. Mitsui, K. Yamashita, K. Sakurai, “Diode laser-frequency stabilization by use of frequency modulation by a vibrating mirror,” Appl. Opt. 36, 5494–5498 (1997). [CrossRef] [PubMed]
  5. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]
  6. V. V. Yashchuk, D. Budker, J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000). [CrossRef]
  7. C. I. Sukenik, H. C. Busch, M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133–137 (2002). [CrossRef]
  8. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976). [CrossRef]
  9. J. B. Kim, H. J. Kong, S. S. Lee, “Dye laser frequency locking to the hyperfine structure (3S1/2, F = 2 - 3P1/2, F = 2) of sodium D1 line by using polarization spectroscopy,” Appl. Phys. Lett. 52, 417–419 (1988). [CrossRef]
  10. G. P. T. Lancaster, R. S. Conroy, M. A. Clifford, J. Arlt, K. Dholakia, “A polarisation spectrometer locked diode laser for trapping cold atoms,” Opt. Commun. 170, 79–84 (1999). [CrossRef]
  11. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1981), chap. 7. [CrossRef]
  12. C. Delsart, J.-C. Keller, “Laser-induced dichroism and birefringence in two- and three-level systems of neon,” J. Appl. Phys. 49, 3662–3666 (1978). [CrossRef]
  13. C. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1988), chap. 7. [CrossRef]
  14. The numerator Δnk0L represents the relative phase difference between the two circularly polarized components.
  15. D. Budker, D. J. Orlando, V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999). [CrossRef]
  16. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002). [CrossRef]
  17. Although the optical density of the saturated absorption α̅L was ∼0.3 in the actual experiment, Eq. (2) still represents an almost-pure dispersion signal.
  18. S. Nakayama, “Polarization spectroscopy of Rb and Cs,” Opt. Commun. 50, 19–25 (1984). [CrossRef]
  19. For the F = 2 → F′ = 1 transition, the |2, 1〉 sublevel is also the pumped state of the σ+-polarized light. However, the qualitative discussion in the context is still valid when the atoms are populated in both |2, 2〉 and |2, 1〉 sublevels.
  20. L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode laser,” Opt. Commun. 201, 391–397 (2002). [CrossRef]
  21. C. P. Pearman, C. S. Adams, S. G. Fox, P. F. Griffin, D. A. Smith, I. G. Hughes, “Polarization spectroscopy of a closed transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002). [CrossRef]
  22. Y. Sasaki, K. Ito, Y. Yoshikawa, K. Kondo, Y. Torii, T. Kuwamoto, T. Hirano, “Department of a narrow band high power laser system using a broad-area diode laser,” in Meeting Abstracts of the Physical Society of Japan (Physical Society of Japan, Tokyo, 2001), Vol. 56, p. 93.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited