OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6650–6660

Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements

Khaled A. Elsayed, Russell J. DeYoung, Larry B. Petway, William C. Edwards, James C. Barnes, and Hani E. Elsayed-Ali  »View Author Affiliations

Applied Optics, Vol. 42, Issue 33, pp. 6650-6660 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all solid-state Ti:sapphire laser differential absorption lidar transmitter was developed. This all-solid-state laser provides a compact, robust, and highly reliable laser transmitter for potential application in differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy-pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 and 900 nm, with M2 of 1.3, have been experimentally demonstrated and their properties compared with model results. The output pulse energy was 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively. At these energies, the beam quality was good enough so that we were able to achieve 30 mJ of ultraviolet laser output at 289 and 300 nm after frequency tripling with two lithium triborate nonlinear crystals.

© 2003 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing

Original Manuscript: April 1, 2003
Revised Manuscript: August 5, 2003
Published: November 20, 2003

Khaled A. Elsayed, Russell J. DeYoung, Larry B. Petway, William C. Edwards, James C. Barnes, and Hani E. Elsayed-Ali, "Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements," Appl. Opt. 42, 6650-6660 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Goldschmidt, R. J. DeYoung, “An ozone differential absorption lidar (DIAL) receiver system for use on unpiloted atmospheric vehicles,” NASA Tech. Rep. NASA/TM-1999-209716 (National Aeronautics and Space Administration, Washington, D.C., 1999).
  2. R. M. Adams, S. A. Hamilton, B. A. McCarl, “An assessment of economic effect of ozone on U.S. agriculture,” J. Air Pollut. Control Assoc. 35, 938–943 (1985). [CrossRef]
  3. W. W. Heck, W. W. Cure, J. O. Rawlings, L. J. Zaragoza, A. S. Heagle, H. E. Heggestad, R. J. Kohut, W. Lance, P. Temple, “Assessing impacts of ozone on agriculture crops: overview,” J. Air Pollut. Control Assoc. 34, 725–735 (1984).
  4. J. M. Pye, “Impact of ozone on the growth and yield of trees—a review,” J. Environ. Qual. 17, 347–360 (1988). [CrossRef]
  5. M. Lippmann, “Health effects of ozone: critical review,” J. Air Pollut. Control Assoc. 39, 672–695 (1989).
  6. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, WHO Global Ozone Research and Monitoring Project, Rep. 37, Geneva, Switzerland, 1995 ( http://www.al.noaa.gov/wwwHD/Pubdocs/Assessment94/authors.html) .
  7. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  8. G. F. Albercht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” Opt. Commun. 52, 401–404 (1985). [CrossRef]
  9. P. Lacovara, L. Esterowitz, M. Kokta, “Growth, spectroscopy, and lasing of titanium-doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985). [CrossRef]
  10. K. F. Wall, A. Sanchez, “Titanium sapphire lasers,” Lincoln Lab. J. 3, 447–462 (1990).
  11. G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator laser,” Opt. Lett. 15, 434–436 (1990). [CrossRef] [PubMed]
  12. G. A. Rines, P. F. Moulton, J. Harrison, “Solid state laser,” U.S. patent5,235,605 (10August1993).
  13. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992). [CrossRef] [PubMed]
  14. T. D. Raymond, V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991). [CrossRef] [PubMed]
  15. T. R. Steele, D. C. Gerstenberger, A. Drobshoff, R. W. Wallace, “Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system,” Opt. Lett. 16, 399–401 (1991). [CrossRef] [PubMed]
  16. N. Finkelestein, W. R. Lempert, R. B. Miles, “Narrow-linewidth passband filter for ultraviolet rotational Raman imaging,” Opt. Lett. 22, 537–539 (1997). [CrossRef]
  17. G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron. 1, 50–57 (1995). [CrossRef]
  18. A. Yu. Dergachev, B. Pati, P. F. Moultin, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 96–99.
  19. D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).
  20. A. K. Mohamed, J. A. Pruvost, I. Ribert, M. Lefebvre, E. Rosencher, D. J. Binks, “Laser diode injected intervacity-double Ti:sapphire laser for single-mode tunable UV sources,” IEEE J. Quantum Electron. 37, 290–295 (2001). [CrossRef]
  21. J. C. Barnes, “Solid state laser technology development for atmospheric sensing applications,” in Digest of the 19th International Laser Radar Conference (ILRC), U. N. Singh, S. Ismail, G. K. Schwemmer, eds. (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 619–622.
  22. J. C. Barnes, W. C. Edwards, L. B. Petway, L. G. Wang, “NASA lidar atmospheric sensing experiment’s titanium-doped sapphire tunable laser system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 459–565.
  23. N. P. Barnes, J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993). [CrossRef]
  24. F. Salin, J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992). [CrossRef] [PubMed]
  25. F. Salin, F. Estable, E. Mottay, L. Brunel, “High-power, gain guided Ti:AL2O3 laser: theory and experiment,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), p. 294.
  26. G. A. Skripko, S. G. Bartoschevich, I. V. Mikhnyuk, I. G. Tarazevich, “LiB3O5, a highly efficient frequency converted for Ti:sapphire lasers,” Opt. Lett. 16, 1726–1728 (1991). [CrossRef] [PubMed]
  27. S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of LiB3O5 crystal,” J. Appl. Phys. 67, 634–638 (1990). [CrossRef]
  28. S. P. Velsko, M. Webb, L. Davis, C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991). [CrossRef]
  29. N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finsh, G. A. Rines, “Cavity locked, injection seeded, titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA 96-0177, presented at the Thirty-Fourth Aerospace Science Meeting and Exhibit, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).
  30. W. Marsh, National Aeronautics and Space Administration Langley Research Center, Hampton, Va. (personal communication, xxxx).
  31. J. M. Eggleston, L. G. DeShazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:Sapphire oscillators,” IEEE J. Quantum Electron. QE-24, 1009–1015 (1988). [CrossRef]
  32. W. G. Wagner, B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963). [CrossRef]
  33. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989). [CrossRef]
  34. D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995). [CrossRef]
  35. R. Powell, Physics of Solid-State Laser Materials (American Institute of Physics, New York, 1998). [CrossRef]
  36. M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited