OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6682–6695

Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction

Tobias Rossmann, M. Godfrey Mungal, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 42, Issue 33, pp. 6682-6695 (2003)
http://dx.doi.org/10.1364/AO.42.006682


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M1 = 5.1, M2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A2+X2Π1/2 (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers.

© 2003 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: March 12, 2003
Revised Manuscript: July 31, 2003
Published: November 20, 2003

Citation
Tobias Rossmann, M. Godfrey Mungal, and Ronald K. Hanson, "Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction," Appl. Opt. 42, 6682-6695 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-33-6682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990). [CrossRef]
  2. G. Kychakoff, R. D. Howe, R. K. Hanson, “Quantitative flow visualization technique for measurements in combustion gases,” Appl. Opt. 23, 704–712 (1984). [CrossRef] [PubMed]
  3. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  4. M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992). [CrossRef]
  5. J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Mudford, S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284–291 (2001). [CrossRef]
  6. T. C. Island, “Quantitative scalar measurements and mixing enhancement in compressible shear layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1997).
  7. N. T. Clemens, P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7, 1071–1081 (1995). [CrossRef]
  8. B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas-phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994). [CrossRef]
  9. H. Hu, M. M. Koochesfahani, “A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows,” Exp. Fluids 33, 202–209 (2002). [CrossRef]
  10. T. R. Meyer, G. F. King, G. C. Martin, R. P. Lucht, F. R. Schauer, J. C. Dutton, “Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing,” Exp. Fluids 32, 603–611 (2002). [CrossRef]
  11. J. L. Palmer, R. K. Hanson, “Temperature imaging in a supersonic-free jet of combustion gases using two-line OH fluorescence,” Appl. Opt. 35, 485–499 (1996). [CrossRef] [PubMed]
  12. B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988). [CrossRef] [PubMed]
  13. K. P Gross, R. L. McKenzie, P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987). [CrossRef]
  14. N. T. Clemens, M. G. Mungal, “Large-scale structure and entrainment in the supersonic mixing layer,” J. Fluid Mech. 284, 171–216 (1995). [CrossRef]
  15. R. K. Hartfield, J. D. Abbitt, J. C. McDaniel, “Injectant mole fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence,” Opt. Lett. 14, 850–852 (1989). [CrossRef] [PubMed]
  16. M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the 30th Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1992.
  17. J. C. McDaniel, J. Graves, “Laser-induced fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor,” J. Propul. Power 4, 591–597 (1988). [CrossRef]
  18. S. O’Byrne, M. Doolan, S. R. Olsen, A. F. P. Houwing, “Measurement and imaging of supersonic combustion in a model scramjet engine,” Shock Waves 9, 221–226 (1999). [CrossRef]
  19. I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990). [CrossRef]
  20. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993). [CrossRef] [PubMed]
  21. J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 384–391 (1993). [CrossRef]
  22. T. Rossmann, M. G. Mungal, R. K. Hanson, “A new shock-tunnel-driven facility for high compressibility mixing layer studies,” presented at the 37th Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1999.
  23. T. Rossmann, “An experimental investigation of high compressibility mixing layers,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 2001).
  24. D. Papamoschou, A. Roshko, “The compressible turbulent shear layer: an experimental study,” J. Fluid Mech. 197, 453–477 (1988). [CrossRef]
  25. P. E. Dimotakis, “Turbulent mixing and combustion,” in High-Speed Flight Propulsion Systems, S. N. B. Murthy, E. T. Curran, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), Vol. 137, pp. 265–340.
  26. W. G. Bessler, C. S. Shultz, J. B. Jeffries, R. K. Hanson, “Measurements of NO A2∑+ ← X2Π1/2 (1,0), (2,0), and (2,1) fluorescence in high-pressure flames,” Appl. Phys. B 45, 351–362 (2002).
  27. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperature,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1996). [CrossRef]
  28. A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A-X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  29. R. Engleman, P. E. Rouse, H. M. Peek, V. D. Balamonte, “Beta and gamma band systems of nitric oxide,” LA-4364 UC-34 Physics TID-4500 (Los Alamos Scientific Laboratory, Los Alamos, N. Mex.1970).
  30. R. Freedman, R. W. Nicholls, “Molecular constants for the v″ = 0 (X2Π) and v′ = 0,1 (A2∑+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980). [CrossRef]
  31. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992). [CrossRef]
  32. K. L. Wray, J. D. Teare, “Shock tube study of the kinetics of nitric oxide at high temperatures,” J. Chem. Phys. 36, 2582–2589 (1962). [CrossRef]
  33. R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, “Chemkin-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Rep. SAND96–8216 (Sandia National Laboratory, Livermore, Calif., 1996).
  34. H. W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).
  35. G. Kamimoto, H. J. Matsui, “Vibrational relaxation of nitric oxide in argon,” J. Chem. Phys. 53, 3987–3989 (1970). [CrossRef]
  36. R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963). [CrossRef]
  37. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, Berlin, 1982).
  38. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO (A2∑+, ν′ = 0),” Chem. Phys. Lett. 259, 508–514 (1996). [CrossRef]
  39. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2∑+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982). [CrossRef]
  40. T. Rossmann, M. G. Mungal, R. K. Hanson, “Character of Mach wave radiation and convection velocity estimation in supersonic shear layers,” presented at the 8th Aeroacoustics Meeting, Boulder, Colo., 17–19 June 2002.
  41. H. Oertel, “Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques,” in Proceedings of 12th International Symposium on Shock Tubes and Waves, (Magnes Press, Jerusalem, Israel, 1979), pp. 266–275.
  42. J. O. Berg, W. L. Shackelford, “Rotational redistribution effect on saturated laser-induced fluorescence,” Appl. Opt. 18, 2093–2094 (1979). [CrossRef] [PubMed]
  43. T. Rossmann, M. G. Mungal, R. K. Hanson, “Laser-based diagnostics and scalar imaging in high compressibility shear layers,” presented at the 11th Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 8–11 July 2002.
  44. J. W. Daily, “Saturation effects in laser-induced fluorescence spectroscopy,” Appl. Opt. 16, 568–571 (1977). [CrossRef] [PubMed]
  45. A. H. Shapiro, The Thermodynamics of Compressible Flow (Wiley, New York, 1963).
  46. J. B. Freund, P. Moin, S. K. Lele, “Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar,” J. Fluid Mech. 421, 269–291 (2000). [CrossRef]
  47. R. D. Wagner, “Mean flow and turbulence measurements in a Mach 5 free shear layer,” NASA TN D-7366 (National Aeronautics and Space Administration Langley Research Center, Hampton, Va., 1973).
  48. J. R. Debisschop, O. Chambres, J-P. Bonnet, “Velocity field characteristics in supersonic mixing layers,” Exp. Therm. Fluid Sci. 9, 147–155 (1994). [CrossRef]
  49. P. M. Danehy, P. C. Palma, R. R. Boyce, A. F. P. Houwing, “Numerical simulation of laser-induced fluorescence imaging in shock-layer flows,” AIAA J. 35, 715–722 (1999). [CrossRef]
  50. D. S. Dowling, P. E. Dimotakis, “Similarity of the concentration field in gas-phase turbulent jets,” J. Fluid Mech. 218, 109–142 (1990). [CrossRef]
  51. M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986). [CrossRef]
  52. T. Rossmann, M. G. Mungal, R. K. Hanson, “Mixing efficiency measurements using a modified cold chemistry technique,” Exp. Fluids, submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited