OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 33 — Nov. 20, 2003
  • pp: 6728–6738

Wavelength modulation spectroscopy: combined frequency and intensity laser modulation

Stéphane Schilt, Luc Thévenaz, and Philippe Robert  »View Author Affiliations

Applied Optics, Vol. 42, Issue 33, pp. 6728-6738 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model of wavelength modulation spectroscopy that uses a laser diode on a Lorentzian absorption line is presented. This theory describes the general case of a current-modulated semiconductor laser, for which a combined intensity and frequency modulation with an arbitrary phase shift occurs. On the basis of this model, the effect of several modulation parameters on the detected signals is evaluated. Experimental signals measured on an absorption line of CO2 by use of a 2-μm distributed-feedback laser are also presented and validate this analysis. These experimental results agree with the calculated signals, confirming the relevance of the model.

© 2003 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: February 6, 2003
Revised Manuscript: July 5, 2003
Published: November 20, 2003

Stéphane Schilt, Luc Thévenaz, and Philippe Robert, "Wavelength modulation spectroscopy: combined frequency and intensity laser modulation," Appl. Opt. 42, 6728-6738 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef] [PubMed]
  2. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  3. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High sensitivity point monitoring of atmospheric gases employing tunable diode lasers,” Appl. Opt. 17, 1806–1810 (1978). [CrossRef] [PubMed]
  4. M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988). [CrossRef]
  5. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  6. R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 11–22 (1999). [CrossRef]
  7. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001). [CrossRef]
  8. D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef] [PubMed]
  9. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993). [CrossRef]
  10. M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997). [CrossRef]
  11. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993). [CrossRef] [PubMed]
  12. X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997). [CrossRef]
  13. A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).
  14. U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg, “Frequency-modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000). [CrossRef]
  15. G. Jacobsen, H. Olesen, F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982). [CrossRef]
  16. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. 20, 1045–1050 (1984). [CrossRef]
  17. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  18. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  19. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  20. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  21. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  22. P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001). [CrossRef]
  23. P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. Theory,” Appl. Opt. 40, 783–793 (2001). [CrossRef]
  24. P. Kluczynski, A. Lindberg, O. Axner, “Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment,” Appl. Opt. 40, 794–805 (2001). [CrossRef]
  25. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  26. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983). [CrossRef] [PubMed]
  27. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132–134 (1986). [CrossRef] [PubMed]
  28. N.-Y. Chou, W. S. Sachse, “Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy,” Appl. Opt. 26, 3584–3587 (1987). [CrossRef] [PubMed]
  29. S. Schilt, “Mesure de traces de gaz à l’aide de lasers à semi-conducteur,” Ph.D. dissertation, No. 2525 (Swiss Federal Institute of Technology, Lausanne, Switzerland, 2002).
  30. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited