OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 34 — Dec. 1, 2003
  • pp: 6816–6823

Polarization-dependent loss and birefringence in long-period fiber gratings

Brent L. Bachim and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 42, Issue 34, pp. 6816-6823 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Widely used descriptions and relationships for birefringence and polarization-dependent loss (PDL), developed primarily for ultraviolet-induced long-period fiber gratings (LPFGs) written in optical fiber, can be invalid for other types of LPFG. The understanding of PDL is expanded to include LPFGs with birefringence in the core only, in the cladding only, and in both the core and the cladding. Equations that link resonant wavelength separation, one factor that determines PDL, and birefringence for the three categories are presented, along with relevant approximations. Measurement results for two LPFGs fabricated by different techniques are presented that illustrate the effect of birefringence on PDL.

© 2003 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.2770) Diffraction and gratings : Gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components

Original Manuscript: June 11, 2003
Revised Manuscript: August 22, 2003
Published: December 1, 2003

Brent L. Bachim and Thomas K. Gaylord, "Polarization-dependent loss and birefringence in long-period fiber gratings," Appl. Opt. 42, 6816-6823 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Vellekoop, M. K. Smit, “Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence,” J. Lightwave Technol. 9, 310–314 (1991). [CrossRef]
  2. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002). [CrossRef]
  3. B. Szafraniec, G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17, 579–590 (1999). [CrossRef]
  4. M. Rochette, S. LaRochelle, P. Y. Cortes, M. Guy, J. Lauzon, “Polarisation mode dispersion compensation of chirped Bragg gratings used as chromatic dispersion compensators,” Electron. Lett. 36, 342–343 (2000). [CrossRef]
  5. W. Fan, B. Chen, X. Li, L. Chen, Z. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun. 204, 157–161 (2002). [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  8. P. Lu, L. Chen, X. Bao, “System outage probability due to the combined effect of PMD and PDL,” J. Lightwave Technol. 20, 1805–1808 (2002). [CrossRef]
  9. P. C. Becker, N. A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, San Diego, Calif., 1999).
  10. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long-period fibre grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997). [CrossRef]
  11. T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994). [CrossRef]
  12. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260–1262 (1994). [CrossRef] [PubMed]
  13. O. Duhem, M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000). [CrossRef]
  14. K. Dossou, S. LaRochelle, M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20, 1463–1470 (2002). [CrossRef]
  15. Y. Ishii, K. Shima, S. Okude, K. Nishide, A. Wada, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. E85-C, 934–939 (2002).
  16. B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9, 1370–1372 (1997). [CrossRef]
  17. S. Pereira, J. E. Sipe, R. E. Slusher, S. Spalter, “Enhanced and suppressed birefringence in fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 1509–1515 (2002). [CrossRef]
  18. S. Sumriddetchkajorn, K. Chaitavon, “A reconfigurable thin-film filter-based 2 × 2 add-drop fiber-optic switch structure,” IEEE Photon. Technol. Lett. 15, 930–932 (2003). [CrossRef]
  19. F. J. Arregui, I. R. Matias, K. L. Cooper, R. O. Claus, “Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process,” Opt. Lett. 26, 131–133 (2001). [CrossRef]
  20. B. Lecourt, D. Blaudez, J. M. Turlet, “Anisotropy in Langmuir–Blodgett films studied by generalized spectroscopic ellipsometry,” Thin Solid Films 313-314, 790–794 (1998). [CrossRef]
  21. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003). [CrossRef] [PubMed]
  22. A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000). [CrossRef]
  23. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000). [CrossRef]
  24. M. Fujimaki, Y. Ohki, J. L. Brebner, S. Roorda, “Fabrication of long-period optical fiber gratings by use of ion implantation,” Opt. Lett. 25, 88–89 (2000). [CrossRef]
  25. S. G. Kosinksi, A. M. Vengsarkar, “Splicer-based long-period fiber gratings,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 278–279.
  26. S. Savin, J. F. Digonnet, G. S. Kino, H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000). [CrossRef]
  27. J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1995).
  28. D. Chowdhury, D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000). [CrossRef]
  29. I. P. Kaminow, “Polarization in optical fibers,” J. Quantum Electron. QE-17, 15–22 (1981). [CrossRef]
  30. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998). [CrossRef]
  31. V. Grubsky, A. Skorucak, D. S. Starodubov, J. Feinberg, “Fabrication of long-period fiber gratings with no harmonics,” IEEE Photon. Technol. Lett. 11, 87–89 (1999). [CrossRef]
  32. Y. Zhu, E. Simova, P. Berini, C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49, 1231–1239 (2000). [CrossRef]
  33. B. H. Lee, J. Cheong, U. C. Paek, “Spectral polarization-dependent loss of cascaded long-period fiber gratings,” Opt. Lett. 27, 1096–1098 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited