OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 34 — Dec. 1, 2003
  • pp: 6824–6829

Grating-assisted demodulation of interferometric optical sensors

Bing Yu and Anbo Wang  »View Author Affiliations


Applied Optics, Vol. 42, Issue 34, pp. 6824-6829 (2003)
http://dx.doi.org/10.1364/AO.42.006824


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.

© 2003 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(070.6020) Fourier optics and signal processing : Continuous optical signal processing

History
Original Manuscript: May 29, 2003
Revised Manuscript: August 8, 2003
Published: December 1, 2003

Citation
Bing Yu and Anbo Wang, "Grating-assisted demodulation of interferometric optical sensors," Appl. Opt. 42, 6824-6829 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-34-6824


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor application,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1620 (1982). [CrossRef]
  2. C. E. Lee, H. F. Taylor, “Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991). [CrossRef]
  3. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991). [CrossRef] [PubMed]
  4. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001). [CrossRef]
  5. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997). [CrossRef]
  6. W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000). [CrossRef]
  7. Y. Kim, D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer,” IEEE Photon. Technol. Lett. 7, 1471–1473 (1995). [CrossRef]
  8. J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–306 (1990). [CrossRef] [PubMed]
  9. J. F. Dorighi, S. Krishnaswamy, J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820–824 (1995). [CrossRef]
  10. K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994). [CrossRef]
  11. B. Yu, D. W. Kim, J. Deng, H. Xiao, A. Wang, “Fiber Fabry-Perot sensors for partial discharge detection in power transformers,” Appl. Opt. 42, 3241–3250 (2003). [CrossRef] [PubMed]
  12. K. Murphy, M. F. Gunther, A. M. Vengsakar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991). [CrossRef] [PubMed]
  13. C. Belleville, G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993). [CrossRef] [PubMed]
  14. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fibre-optic interferometric sensor utilising low coherence length sources: resolution enhencement,” Electron. Lett. 24, 472–474 (1988). [CrossRef]
  15. M. Schmidt, N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999). [CrossRef]
  16. S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 44–48 (1998). [CrossRef]
  17. B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel date processing techniques for dispersive white light interferometer,” Optical Engineering (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited