OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 34 — Dec. 1, 2003
  • pp: 6846–6852

Phase Recovery from a Single Undersampled Interferogram

Jesús Muñoz, Marija Strojnik, and Gonzalo Páez  »View Author Affiliations

Applied Optics, Vol. 42, Issue 34, pp. 6846-6852 (2003)

View Full Text Article

Acrobat PDF (2102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method of phase determination from a single undersampled interferogram is described. Two low-fringe-density synthetic interferograms corresponding to the phase differences along orthogonal directions are obtained from neighboring pixels of the aliased measured data. The only assumption is that the illumination background, the modulation intensity, and the searched phase are smooth and continuous functions. The synthetic interferograms are demodulated by use of either standard frequency or spatial-domain procedures to obtain the phase differences. The phase is then recovered by integration of the phase differences with a least-squares method. The proposed method is demonstrated to be noise tolerant.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(220.4840) Optical design and fabrication : Testing

Jesús Muñoz, Marija Strojnik, and Gonzalo Páez, "Phase Recovery from a Single Undersampled Interferogram," Appl. Opt. 42, 6846-6852 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
  2. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  3. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986).
  4. K. H. Womack, “Interferometric phase measurement using spatial synchronous detection,” Opt. Eng. 23, 391–395 (1984).
  5. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), p. 195.
  6. D. L. Fried, “Least-squares fitting of a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
  7. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1997).
  8. R. J. Noll, “Phase estimates from slope-type wave-front sensors,” J. Opt. Soc. Am. 68, 139–140 (1978).
  9. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).
  10. I. Lyuboshenko and H. Maitre, “Phase unwrapping for interferometric synthetic aperture radar by use of Helmholtz equation eigenfunctions and the first Green’s identity,” J. Opt. Soc. Am. A 16, 378–395 (1999).
  11. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470 (1982).
  12. D. C. Ghiglia and L. A. Romero, “Minimum Lp-norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13, 1999–2013 (1996).
  13. J. L. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995).
  14. M. Servin, F. J. Cuevas, D. Malacara, J. L. Marroquin, and R. Rodríguez, “Phase unwrapping through demodulation by use of the regularized phase-tracking technique,” Appl. Opt. 38, 1934–1941 (1999).
  15. M. V. R. K. Murty, “A compact lateral shearing interferometer based on the Michelson interferometer,” Appl. Opt. 9, 1146–1152 (1970).
  16. G. Páez, M. Strojnik, and G. Garcia-Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172–5178 (2000).
  17. G. Garcia-Torales, G. Páez, and M. Strojnik, “Simulations and experimental results with a vectorial shearing interferometer,” Opt. Eng. 40, 767–773 (2001).
  18. D. Malacara, “Hartmann test of aspherical mirrors,” Appl. Opt. 11, 99–101 (1972).
  19. M. Servin, D. Malacara, J. L. Marroquin, and F. J. Cuevas, “New technique for ray aberration detection in Hartmanngrams based on regularized bandpass filters,” Opt. Eng. 35, 1677–1683 (1996).
  20. M. Servin, F. J. Cuevas, D. Malacara, and J. L. Marroquin, “Direct ray aberration estimation in Hartmanngrams by use of a regularized phase-tracking system,” Appl. Opt. 38, 2862–2869 (1999).
  21. O. Katsuyuki and Y. Toyohiko, “Phase measuring Ronchi test,” Appl. Opt. 27, 523–528 (1988).
  22. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26, 5245–5257 (1987).
  23. J. E. Greivenkamp, A. E. Lowman, and R. J. Palum, “Sub-Nyquist interferometry: implementation and measurement capability,” Opt. Eng. 35, 2962–2969 (1996).
  24. B. W. Bell and C. L. Koliopoulos, “Moiré topography, sampling theory, and charged-coupled devices,” Opt. Lett. 9, 171–173 (1994).
  25. J. Schwider, “Detection of undersampling from measured phase-shifting data,” Opt. Lett. 19, 231–233 (1994).
  26. J. Muñoz, M. Strojnik, and G. Páez, “Detection and interpretation of high-frequency spatial interferograms,” in Infrared Spaceborne Remote Sensing IX, M. Strojnik and B. F. Andersen, eds., Proc. SPIE 4486, 523–532 (2002).
  27. M. Servin, D. Malacara, and F. J. Cuevas, “Path-independent phase unwrapping of subsampled phase maps,” Appl. Opt. 35, 1643–1649 (1996).
  28. J. Muñoz, G. Páez, and M. Strojnik, “Phase unwrapping of subsampled phase-shifted interferograms,” in Interferometry XI: Techniques and Analysis, K. Creath and J. Schmit, eds., Proc. SPIE 4777, 288–299 (2002).
  29. M. Servin and D. Malacara, “Sub-Nyquist interferometry using a computer-stored reference,” J. Mod. Opt. 43, 1723–1729 (1996).
  30. M. Servin, D. Malacara, Z. Malacara, and V. I. Vlad, “Sub-Nyquist null aspheric testing using a computer-stored compensator,” Appl. Opt. 33, 4103–4108 (1994).
  31. M. Kujawinska and J. Schmidt, “Spatial-carrier phase-shifting technique of fringe pattern analysis,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jueptner, ed., Proc. SPIE 1508, 61–67 (1991).
  32. M. Pirga and M. Kujawinska, “Two-directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34, 2459–2466 (1995).
  33. G. Páez and M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns by use of synthetic interferograms,” Opt. Lett. 23, 406–408 (1998).
  34. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt. 36, 4540–4548 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited