OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 34 — Dec. 1, 2003
  • pp: 6959–6966

Phase-Slope and Group-Dispersion Calculations in the Frequency Domain by Simple Optical Low-Coherence Reflectometry

Young L. Kim, Joseph T. Walsh, Jr., and Matthew R. Glucksberg  »View Author Affiliations


Applied Optics, Vol. 42, Issue 34, pp. 6959-6966 (2003)
http://dx.doi.org/10.1364/AO.42.006959


View Full Text Article

Acrobat PDF (264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new method by which phase slope and group dispersion can be calculated with a simple optical low-coherence reflectometer to quantify physiological conditions. A discrete-time signal processing algorithm based on the first and second derivatives of the phase with respect to wave number was developed from discrete-time Fourier properties. The algorithm avoids the 2π ambiguity associated with most phase unwrapping. Experimental data collected by use of well-characterized optical materials validated the algorithm, which was minimally sensitive to phase noise. The group dispersion of bovine cornea was measured at various hydrations and was significantly dependent on hydration. The results suggest that group dispersion is an indicator of corneal alterations.

© 2003 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.2030) Physical optics : Dispersion

Citation
Young L. Kim, Joseph T. Walsh, Jr., and Matthew R. Glucksberg, "Phase-Slope and Group-Dispersion Calculations in the Frequency Domain by Simple Optical Low-Coherence Reflectometry," Appl. Opt. 42, 6959-6966 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-34-6959


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
  3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
  4. X. J. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144–149 (1997).
  5. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
  6. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
  7. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
  8. S. Jiao and L. H. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
  9. U. Morgner, W. Drexler, X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
  10. P. A. Edney and J. T. Walsh, “Acoustic modulation and photon-photon scattering in optical coherence tomography,” Appl. Opt. 40, 6381–6388 (2001).
  11. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
  12. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. E. Hee, and J. G. Fujimoto, “Determination of the refractive index of high scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
  13. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
  14. B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
  15. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998).
  16. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
  17. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
  18. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42, 204–217 (2003).
  19. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787–5790 (2001).
  20. W. H. Steel, Interferometry (Cambridge U. Press, Cambridge, 1983), pp. 256–257.
  21. D. P. Dave and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
  22. M. A. Schofield and Y. Zhu, “Fast phase unwrapping algorithm for interferometric applications,” Opt. Lett. 28, 1194–1196 (2003).
  23. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
  24. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1999).
  25. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978), pp. 189–194.
  26. A. Wexler, “Constant humidity solutions,” in Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC, Boca Raton, Fla., 2000), Sec. 15–25.
  27. B. Hedbys and S. Mishima, “The thickness-hydration relationship of the cornea,” Exp. Eye Res. 5, 221–228 (1966).
  28. I. Fatt and T. K. Goldstick, “Dynamics of water transport in swelling membranes,” J. Colloid. Sci. 20, 962–989 (1965).
  29. W. I. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 33.
  30. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1981).
  31. D. M. Maurice, “The cornea and sclera,” in The Eye, H. Davson, ed. (Academic, Orlando, Fla., 1984), pp. 1–158.
  32. P. J. Dougherty, K. L. Wellish, and R. K. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited