OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 36 — Dec. 20, 2003
  • pp: 7149–7156

Intensity and phase mapping of guided light in LiNbO3 waveguides with an interferometric near-field scanning optical microscope

Anthony L. Campillo and Julia W. P. Hsu  »View Author Affiliations


Applied Optics, Vol. 42, Issue 36, pp. 7149-7156 (2003)
http://dx.doi.org/10.1364/AO.42.007149


View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and implementation of a phase-sensitive near-field scanning optical microscope incorporating both heterodyne interferometric detection and a phase feedback mechanism are described. Using this microscope we demonstrate a new method for measuring the effective index of the guided mode of a waveguide from the phase images. Two types of LiNbO3 waveguide, defined by titanium diffusion or annealed proton exchange, were studied. Both the profile and the effective index of the mode were measured experimentally. For titanium-diffused waveguides, both agree well with values determined from numerical simulation. In annealed proton-exchanged waveguides that contain periodically poled domains, we find evidence for backreflection from the boundaries between neighboring regions of opposite pole directions, which could result in transmission loss in this type of waveguide.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(180.5810) Microscopy : Scanning microscopy
(260.3160) Physical optics : Interference

History
Original Manuscript: May 28, 2003
Revised Manuscript: August 26, 2003
Published: December 20, 2003

Citation
Anthony L. Campillo and Julia W. P. Hsu, "Intensity and phase mapping of guided light in LiNbO3 waveguides with an interferometric near-field scanning optical microscope," Appl. Opt. 42, 7149-7156 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-36-7149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000). [CrossRef]
  2. H. Takahashi, Y. Hibino, I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992). [CrossRef] [PubMed]
  3. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000). [CrossRef]
  4. T. Yamada, “LiNbO3 family,” in Landol-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, K.-H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1981), Vol. 16a, pp. 149–156, 489–499.
  5. K. Kintaka, M. Fujimura, T. Suhara, H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996). [CrossRef]
  6. E. J. Lim, M. M. Fejer, R. L. Beyer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989). [CrossRef]
  7. K. R. Parameswaran, M. Fujimura, M. H. Chou, M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000). [CrossRef]
  8. M. H. Chou, J. Hauden, M. A. Arbore, M. M. Fejer, “1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998). [CrossRef]
  9. R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974). [CrossRef]
  10. P. G. Suchoski, T. K. Findakly, F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988). [CrossRef] [PubMed]
  11. D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, R. J. Warmack, “Photon scanning tunneling microscope study of optical waveguides,” Appl. Phys. Lett. 56, 1515–1517 (1990). [CrossRef]
  12. G. H. Vander Rhodes, M. S. Ünlü, B. B. Goldberg, J. M. Pomeroy, T. F. Krauss, “Characterisation of waveguide microcavities using high-resolution transmission spectroscopy and near-field scanning optical microscopy,” Proc. Inst. Electr. Eng. Optoelectron. 145, 379–383 (1998). [CrossRef]
  13. A. G. Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994). [CrossRef]
  14. G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. Chu, B. E. Little, “Internal spatial modes in glass microring resonators,” IEEE J. Sel. Top. Quantum Electron. 6, 46–53 (2000). [CrossRef]
  15. A. L. Campillo, J. W. P. Hsu, C. A. White, A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002). [CrossRef]
  17. F. Roddier, M. Northcott, E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  18. E. Volkl, L. F. Allard, D. C. Joy, eds., Introduction to Electron Holography (Kluwer-Academic, New York, 1999). [CrossRef]
  19. P. L. Phillips, J. C. Knight, J. M. Pottage, G. Kakarantzas, P. St. J. Russell, “Direct measurement of optical phase in the near field,” Appl. Phys. Lett. 76, 541–543 (2000). [CrossRef]
  20. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294–297 (2000). [CrossRef] [PubMed]
  21. A. Nesci, R. Dändliker, M. Salt, H. P. Herzig, “Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution,” Opt. Commun. 205, 229–238 (2002). [CrossRef]
  22. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998). [CrossRef]
  23. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]
  24. J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip-sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995). [CrossRef]
  25. M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996). [CrossRef]
  26. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926–2929 (1980). [CrossRef] [PubMed]
  27. K. Fritsch, G. Adamovsky, “Simple circuit for feedback stabilization of a single-mode optical fiber interferometer,” Rev. Sci. Instrum. 52, 996–1000 (1981). [CrossRef]
  28. R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Components Packag. Manuf. Technol. Part B 21, 130–135 (1998). [CrossRef]
  29. S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3 strip waveguides,” IEEE Trans. Microwave Theory Tech. MTT-30, 1784–1789 (1982). [CrossRef]
  30. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  31. M. S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. Optoelectron. 135, 56–63 (1988).
  32. M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991). [CrossRef] [PubMed]
  33. A. L. Campillo, J. W. P. Hsu, C. A. White, C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239–2241 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited