OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 36 — Dec. 20, 2003
  • pp: 7197–7201

Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory

Frank E. Hoge  »View Author Affiliations


Applied Optics, Vol. 42, Issue 36, pp. 7197-7201 (2003)
http://dx.doi.org/10.1364/AO.42.007197


View Full Text Article

Enhanced HTML    Acrobat PDF (76 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent radiative transfer models show that: (1) regardless of elastic lidar receiver field of view (FOV), at vanishing lidar depth the lidar-derived attenuation coefficient klidara, where a is the total absorption coefficient per meter of depth; and (2) for a wide FOV as the lidar sensing depth approaches some large value (depending on water type), klidarK d , where K d is the diffuse attenuation for downwelling irradiance. As a result, it is shown that a time-resolved, dual-wavelength-laser, elastic-backscattering lidar can retrieve the three principal oceanic optical properties: (1) the absorption coefficient of phytoplankton aph, (2) the absorption coefficient of chromophoric dissolved organic matter (CDOM) aCDOM, and (3) the nonwater total constituent backscattering coefficient bbt. The lidar-retrieved aph, aCDOM, and bbt inherent optical properties can be used to validate corresponding satellite-derived products such as those from terra moderate-resolution imaging spectroradiometer (MODIS), Aqua MODIS, Sea-viewing Wide Field-of-view Sensor, (SeaWiFS), and other ocean color sensors.

© 2003 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: February 11, 2003
Revised Manuscript: August 15, 2003
Published: December 20, 2003

Citation
Frank E. Hoge, "Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory," Appl. Opt. 42, 7197-7201 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-36-7197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999). [CrossRef]
  2. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999). [CrossRef]
  3. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001). [CrossRef]
  4. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, C. R. Schirtzinger, “Next-generation NASA Airborne Oceanographic Lidar system,” Appl. Opt. 40, 336–342 (2001). [CrossRef]
  5. R. E. Walker, J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38, 2384–2397 (1999). [CrossRef]
  6. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  7. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  8. Y. I. Kopilevich, V. I. Feigels, “On multispectral lidar sounding of ocean waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 51–60 (2002). [CrossRef]
  9. G. Roy, L. R. Bissonnette, C. Bastille, G. Vallee, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation,” Appl. Opt. 38, 5202–5211 (1999). [CrossRef]
  10. R. Cahalan, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2002).
  11. C. W. Wright, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2002).
  12. F. E. Hoge, R. N. Swift, “Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter,” Appl. Opt. 22, 3778–3786 (1983). [CrossRef] [PubMed]
  13. J. W. McLean, J. D. Freeman, R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998). [CrossRef]
  14. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988). [CrossRef] [PubMed]
  15. J. R. V. Zaneveld, “Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982). [CrossRef] [PubMed]
  16. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100C, 13135–13142 (1995). [CrossRef]
  17. J. K. B. Bishop, “Transmissometer measurement of POC,” Deep-Sea Res. I 46, 353–369 (1999). [CrossRef]
  18. J. K. B. Bishop, S. E. Calvert, M. Y. S. Moon, “Spatial variability of POC in the northeast Subarctic Pacific,” Deep-Sea Res. II 46, 2699–2733 (1999). [CrossRef]
  19. V. I. Feigels, Yu. Kopilevich, “Applicability of lidar remote sensing methods for vertical structure investigation of ocean optical properties distribution,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 449–457 (1994). [CrossRef]
  20. G. C. Guenther, R. W. L. Thomas, P. E. LaRoacque, “Design considerations for achieving high accuracy with the SHOALS bathymetric lidar system,” in Laser Remote Sensing of Natural Waters: From Theory to Practice, V. I. Feigels, Y. I. Kopilevich, eds., Proc. SPIE2964, 54–71 (1996). [CrossRef]
  21. O. Steinvall, K. Koppari, “Depth sounding lidar—an overview of Swedish activities and with future prospects,” in Laser Remote Sensing of Natural Waters: From Theory to Practice, V. I. Feigels, Y. I. Kopilevich, eds., Proc. SPIE2964, 2–25 (1996). [CrossRef]
  22. R. H. Abbot, D. W. Lane, M. J. Sinclair, T. A. Spurling, “Lasers chart waters of Australia’s Great Barrier Reef,” in Laser Remote Sensing of Natural Waters: From Theory to Practice, V. I. Feigels, Y. I. Kopilevich, eds., Proc. SPIE2964, 72–90 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited