OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 4 — Feb. 1, 2003
  • pp: 719–723

Characteristics of the thick, compound refractive lens

Richard H. Pantell, Joseph Feinstein, H. Raul Beguiristain, Melvin A. Piestrup, Charles K. Gary, and Jay T. Cremer  »View Author Affiliations


Applied Optics, Vol. 42, Issue 4, pp. 719-723 (2003)
http://dx.doi.org/10.1364/AO.42.000719


View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens.

© 2003 Optical Society of America

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(180.7460) Microscopy : X-ray microscopy
(340.0340) X-ray optics : X-ray optics

History
Original Manuscript: April 5, 2002
Revised Manuscript: September 26, 2002
Published: February 1, 2003

Citation
Richard H. Pantell, Joseph Feinstein, H. Raul Beguiristain, Melvin A. Piestrup, Charles K. Gary, and Jay T. Cremer, "Characteristics of the thick, compound refractive lens," Appl. Opt. 42, 719-723 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-4-719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tomie, “X-ray lens,” Japan patent6-045288 (18February1994).
  2. T. Tomie, “X-ray lens,” U.S. patent5,594,773 (14January1997).
  3. T. Tomie, “X-ray lens,” U.S. patent5,684,852 (4November1997).
  4. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, “A compound refractive lens for focusing high-energy x-rays,” Nature (London) 384, 49–51 (1996). [CrossRef]
  5. B. X. Yang, “Fresnel and refractive lenses for x-rays,” Nucl. Instrum. Methods Phys. Res. A 328, 578–587 (1993). [CrossRef]
  6. R. K. Smither, A. M. Khounsary, S. Xu, “Potential of a beryllium x-ray lens,” in High Heat Flux and Synchrotron Radiation Beamlines, A. T. Macrander, A. M. Khounsary, eds., Proc. SPIE3151, 150–163 (1997). [CrossRef]
  7. P. Ellaume, “Two-plane focusing of 30 keV undulator radiation,” J. Synchrotron Radiat. 5, 1–5 (1998). [CrossRef]
  8. B. Lengeler, C. G. Schroer, M. Richwin, J. Tümmler, M. Drakopolulos, A. Snigirev, I. Snigireva, “A microscope for hard x rays based on parabolic compound refractive lenses,” Appl. Phys. Lett. 74, 3924–3926 (1999). [CrossRef]
  9. J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, C. K. Gary, R. H. Pantell, R. Tatchyn, “Cylindrical compound refractive x-ray lenses using plastic substrates,” Rev. Sci. Instrum. 70, 3545–3548 (1999). [CrossRef]
  10. H. R. Beguiristain, M. A. Piestrup, R. H. Pantell, C. K. Gary, J. T. Cremer, “Development of compound refractive lenses for x-rays,” in Synchrotron Radiation Instrumentation: Eleventh Proceedings of the U.S. National Conference, P. Pianetta, J. Arthur, S. Brennan, eds. (American Institute of Physics, New York, 2000), Vol. 521, pp. 258–266.
  11. H. R. Beguiristain, J. T. Cremer, M. A. Piestrup, R. H. Pantell, C. K. Gary, J. Feinstein, “Compound x-ray refractive lenses made of polyimide,” in Advances in Laboratory-based X-Ray Sources and Optics, C. A. MacDonald, A. M. Khounsary, eds., Proc. SPIE4144, 155–164 (2000). [CrossRef]
  12. M. A. Piestrup, R. H. Pantell, J. T. Cremer, H. R. Beguiristain, “Compound refractive lens,” U.S. patent6,269,145 (31July2001).
  13. R. H. Pantell, J. Feinstein, M. A. Piestrup, H. R. Beguiristain, C. K. Gary, J. T. Cremer, “The effect of unit lens alignment and surface quality on compound refractive lens performance,” Rev. Sci. Instrum. 72, 48–52 (2001). [CrossRef]
  14. M. A. Piestrup, H. R. Beguiristain, C. K. Gary, J. T. Cremer, R. H. Pantell, “Two-dimensional x-ray focusing from compound lenses made of plastic,” Rev. Sci. Instrum. 71, 4375–4379 (2000). [CrossRef]
  15. H. R. Beguiristain, J. T. Cremer, M. A. Piestrup, C. K. Gary, “X-ray focusing with compound lenses made from beryllium,” Opt. Lett. 27, 778–780 (2002). [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999), p. 171 ff.
  17. V. V. Protopopov, K. A. Valiev, “Theory of an ideal compound x-ray lens,” Opt. Commun. 151, 297–312 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited