OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 5 — Feb. 10, 2003
  • pp: 861–870

Low-density parity-check codes for volume holographic memory systems

Hossein Pishro-Nik, Nazanin Rahnavard, Jeongseok Ha, Faramarz Fekri, and Ali Adibi  »View Author Affiliations

Applied Optics, Vol. 42, Issue 5, pp. 861-870 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.

© 2003 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: July 23, 2002
Revised Manuscript: November 8, 2002
Published: February 10, 2003

Hossein Pishro-Nik, Nazanin Rahnavard, Jeongseok Ha, Faramarz Fekri, and Ali Adibi, "Low-density parity-check codes for volume holographic memory systems," Appl. Opt. 42, 861-870 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  2. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995). [CrossRef]
  3. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996). [CrossRef] [PubMed]
  4. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. G. Unther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997). [CrossRef]
  5. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, R. M. Shelby, “Volume holographic data storage at areal density of 250 gigapixels/in.2,” Opt. Lett. 26, 444–446 (2001). [CrossRef]
  6. X. An, G. W. Burr, D. Psaltis, “Thermal fixing of 10,000 holograms in linbo3:Fe,” Appl. Opt. 38, 386–393 (1999). [CrossRef]
  7. G. B. F. Mok, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  8. W. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998). [CrossRef]
  9. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef] [PubMed]
  10. M. A. Neifeld, W. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997). [CrossRef] [PubMed]
  11. W. Chou, M. A. Neifeld, “Soft-decision array decoding for volume holographic memory systems,” J. Opt. Soc. Am. A 18, 185–194 (2001). [CrossRef]
  12. X. Chen, K. M. Chugg, M. A. Neifeld, “Near optimal parallel distributed data detection for page-oriented optical memories,” IEEE J. Sel. Top. Quantum Electron. 4, 866–879 (1998). [CrossRef]
  13. T. J. Richardson, R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47, 599–618 (2001). [CrossRef]
  14. R. G. Galleger, Low-density Parity-Check Codes (MIT, Cambridge, Mass., 1963).
  15. D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45, 399–431 (1999). [CrossRef]
  16. T. J. Richardson, M. A. Shokrollahi, R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory 47, 619–637 (2001). [CrossRef]
  17. T. J. Richardson, R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inf. Theory 47, 638–656 (2001). [CrossRef]
  18. S. Y. Chung, “On the construction of some capacity-approaching coding schemes,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2000).
  19. S. Y. Chung, T. J. Richardson, R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. Theory 47, 657–670 (2001). [CrossRef]
  20. M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, “Improved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf. Theory 47, 585–598 (2001). [CrossRef]
  21. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory 27, 533–547 (1981). [CrossRef]
  22. H. Pishro-Nik, N. Rahnavard, F. Fekri, “Nonuniform error correction using low-density parity-check codes,” in Proceedings of Fortieth Annual Allerton Conference on Communication, Control, and Computing, Monticello, Ill., Oct. (2002). http://www.csl.uiuc.edu/allerton/ .
  23. A. Kavčić, X. Ma, M. Mitzenmacher, “Binary inersymbol interference channels: Gallager codes, density evolution, and code performance bounds,” IEEE Trans. Inf. Theory. http://www.eecs.harvard.edu/∼michaelm/NEWWORK/papers.html#CodesAn .
  24. D. J. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992). [CrossRef]
  25. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium-niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited