OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 1019–1028

Comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures

Susanne Picard, Lennart Robertsson, Long-Sheng Ma, Kaj Nyholm, Mikko Merimaa, Tero E. Ahola, Petr Balling, Petr Kr̆en, and Jean-Pierre Wallerand  »View Author Affiliations


Applied Optics, Vol. 42, Issue 6, pp. 1019-1028 (2003)
http://dx.doi.org/10.1364/AO.42.001019


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A frequency comparison was carried out between iodine-stabilized Nd:YAG lasers at 532 nm from the Bureau International des Poids et Mesures, the Centre for Metrology and Accreditation, the Czech Metrology Institute, and the Bureau National de Métrologie-Institut National de Métrologie. The frequency differences between lasers, as well as the frequency reproducibility of each system, were investigated. Pressure-, modulation-, and power-induced shifts were studied. A frequency dispersion (1 σ) of 3.5 kHz (6.2 × 10-12 in relative terms) with an average reproducibility for each laser of the order of 0.4 kHz (7.1 × 10-13 in relative terms) was observed over the duration of the comparison. Relative stabilities better than 1 × 10-13 at 1 s were demonstrated for the third-harmonic systems.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3500) Lasers and laser optics : Lasers, erbium
(300.1030) Spectroscopy : Absorption
(300.6460) Spectroscopy : Spectroscopy, saturation

History
Original Manuscript: April 16, 2002
Revised Manuscript: October 16, 2002
Published: February 20, 2003

Citation
Susanne Picard, Lennart Robertsson, Long-Sheng Ma, Kaj Nyholm, Mikko Merimaa, Tero E. Ahola, Petr Balling, Petr Kr̆en, and Jean-Pierre Wallerand, "Comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures," Appl. Opt. 42, 1019-1028 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-6-1019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Comptes Rendus Seventeenth Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Sèvres, France, 1983), pp. 45–49.
  2. “Documents concerning the new definition of the metre,” Metrologia 19, 163–177 (1984).
  3. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999). [CrossRef]
  4. G. R. Hanes, K. M. Baird, J. De Remigis, “Stability, reproducibility, and absolute wavelength of a 633-nm He-Ne laser stabilized to an iodine hyperfine component,” Appl. Opt. 12, 1600–1605 (1973). [CrossRef] [PubMed]
  5. A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926–930 (1973). [CrossRef]
  6. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  7. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  8. G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982). [CrossRef]
  9. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 11, 537–539 (1982). [CrossRef]
  10. M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995). [CrossRef]
  11. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999). [CrossRef]
  12. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995). [CrossRef]
  13. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000). [CrossRef] [PubMed]
  14. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001). [CrossRef]
  15. K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434. [CrossRef]
  16. L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).
  17. G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002). [CrossRef]
  18. L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001). [CrossRef]
  19. L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001). [CrossRef]
  20. L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936). [CrossRef]
  21. Comité International des Poids et Mesures, Report of the 90th Meeting, October 2002 (Bureau International des Poids et Mesures, Sèvres, France), to be published.
  22. P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000). [CrossRef]
  23. P. Balling, “Measurement of frequency modulation amplitude of lasers to 1 part in 103,” Metrologia 38, 297–299 (2001). [CrossRef]
  24. H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95). [CrossRef]
  25. J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999). [CrossRef]
  26. M. Gläser, “Properties of a He-Ne laser at λ = 612 nm, stabilized by means of an external iodine absorption cell,” IEEE Trans. Instrum. Meas. 36, 604–608 (1987). [CrossRef]
  27. A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997). [CrossRef]
  28. L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997). [CrossRef]
  29. U. Brandt, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993). [CrossRef]
  30. M. Gläser, “An improved He-Ne laser at λ = 612 nm, stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986). [CrossRef]
  31. L. Robertsson, “Line-shape distortion due to self-focusing effects when using frequency modulation techniques in saturation spectroscopy,” J. Mod. Opt. 41, 1327–1337 (1994). [CrossRef]
  32. H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000). [CrossRef]
  33. S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’iode 14800–20000 cm-1. Complément: identification des Transitions du Systèm (B-X) (Editions du Centre National de la Recherche Scientifique, Orsay, France, 1985).
  34. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001). [CrossRef]
  35. A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001). [CrossRef]
  36. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  37. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993). [CrossRef]
  38. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: erratum,” J. Opt. Soc. Am. B 10, 866 (1994). [CrossRef]
  39. M. L. Eickhoff, “Two new methods for real-time precision refractometry and a precise test of the hyperfine Hamiltonian via modulation transfer spectroscopy of molecular iodine at 532 nm,” Ph.D. dissertation, University of Colorado, Boulder, Colo., 1994.
  40. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981). [CrossRef]
  41. S. Picard-Fredin, A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM 91/2 (Bureau International des Poids et mesures, Sèvres, France, 1991).
  42. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).
  43. A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited