OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 1052–1067

Analysis of Electro-Optic Crystal-Based Fabry-Perot Etalons for High-Speed Spatial Light Modulators

Kuniharu Takizawa  »View Author Affiliations


Applied Optics, Vol. 42, Issue 6, pp. 1052-1067 (2003)
http://dx.doi.org/10.1364/AO.42.001052


View Full Text Article

Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of electro-optic (EO) crystal-based Fabry-Perot modulators (FPMs) as high-speed spatial light modulators is proposed. The FPMs operate with an extremely low drive voltage and a high extinction ratio. It is revealed by analysis of both the linear EO effect and the inverse piezoelectric effect of various EO crystals that three kinds of crystal configuration are suitable as FPMs. One of these is applicable to isotropic crystals, point groups 23 and 43m, and the others are better suited for uniaxial EO crystals, point groups 4???2m and 3m. Typical EO crystals suitable as FPMs are ferroelectric crystals such as LiNbO3, LiTaO3, and LiIO3 and sillenite compounds such as Bi12SiO20 and Bi12GeO20 as well as compound semiconductors such as GaAs and GaP.

© 2003 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(160.2100) Materials : Electro-optical materials
(160.3730) Materials : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.6120) Optical devices : Spatial light modulators

Citation
Kuniharu Takizawa, "Analysis of Electro-Optic Crystal-Based Fabry-Perot Etalons for High-Speed Spatial Light Modulators," Appl. Opt. 42, 1052-1067 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-6-1052


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Takizawa, M. Okada, H. Kikuchi, and T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
  2. D. Armitage, J. I. Thackara, and W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
  3. K. Takizawa, H. Kikuchi, T. Aida, and M. Okada, “Optical parallel logic gate using a Pockels readout optical modulator and twisted nematic liquid-crystal cells,” Opt. Lett. 14, 208–210 (1989).
  4. H. Fujikake, K. Takizawa, and H. Kikuchi, “Bistable spatial light modulator using guest-host liquid crystal and Bi12GeO20 photoconductive crystal,” Jpn. J. Appl. Phys. 32, 842–848 (1993).
  5. T. Aida, K. Takizawa, H. Kikuchi, and M. Okada, “Optical parallel logic processor using a liquid crystal light valve and twisted nematic liquid crystal cells,” Jpn. J. Opt. 21, 724–729 (1992).
  6. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, and S. Fukushima, “Real-time velocity measurement by the use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
  7. B. Javidi, G. Zhang, A. H. Fazlollahi, and U. Efron, “Application of a wire-grid-mirror liquid-crystal light valve in a nonlinear joint transform correlator,” Appl. Opt. 33, 2834–2841 (1994).
  8. M. Ishikawa, N. Mukohzaka, H. Toyoda, and Y. Suzuki, “Optical associatron: a simple model for optical associative memory,” Appl. Opt. 28, 291–301 (1989).
  9. D. R. Collins, J. B. Sampsell, L. J. Hornbeck, J. M. Florence, P. A. Penz, and M. T. Gately, “Deformable mirror device spatial light modulators and their applicability to optical neural network,” Appl. Opt. 28, 4900–4907 (1989).
  10. T. T. True, “High-performance video projector using two oil-film light valves,” in Technical Digest of the Society for Information Display International Symposium 18 (Society for Information Display, Santa Ana, Calif., 1987), pp. 68–71.
  11. V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE 1255, 59–68 (1990).
  12. R. A. Forber, A. Au. Efron, K. Sayyah, and S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Application, P. S. Drzaic and U. Efron, eds., Proc. SPIE 1665, 259–273 (1992).
  13. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, and K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
  14. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, and K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
  15. K. Takizawa, T. Fujii, H. Kikuchi, H. Fujikake, M. Kawakita, Y. Hirano, and F. Sato, “Spatial light modulators for high-brightness projection displays,” Appl. Opt. 38, 5646–5655 (1999).
  16. B. A. Horwitz and F. J. Corbett, “The PROM—theory and applications for Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).
  17. T. Minemoto, K. Okamoto, and K. Miyamoto, “Optical parallel logic gate using spatial light modulators with the Pockels effect,” Appl. Opt. 24, 2055–2062 (1985).
  18. C. Warde, A. D. Fisher, D. M. Cocco, and M. Y. Burmawi, “Microchannel spatial light modulator,” Opt. Lett. 3, 196–198 (1978).
  19. C. Warde and J. I. Thackara, “Oblique-cut LiNbO3 microchannel spatial light modulator,” Opt. Lett. 7, 344–346 (1982).
  20. C. Warde and J. Thackra, “Operating modes of the microchannel spatial light modulator,” Opt. Eng. 22, 695–703 (1983).
  21. A. Schwartz, X.-Y. Wang, and C. Warde, “Electron-beam-addressed microchannel spatial light modulator,” Opt. Eng. 24, 119–123 (1985).
  22. T. Hara, K. Shinoda, T. Kato, M. Sugiyama, and Y. Suzuki, “Microchannel spatial light modulator having the functions of image zooming, shifting, and rotating,” Appl. Opt. 25, 2306–2310 (1986).
  23. T. Hara, Y. Ooi, Y. Suzuki, and M. H. Wu, “Transfer characteristics of the microchannel spatial light modulator,” Appl. Opt. 28, 4781–4786 (1989).
  24. T. Hara and Y. Suzuki, “Microchannel spatial light modulator,” Optoelectron. Devices Technol. 10, 393–420 (1995).
  25. Y. Kocher, G. Lebreton, and B. Moreau, “The TITUS light modulator in optical processing,” in Optical Computing ’88, P. H. Charel, J. W. Goodman, and G. Roblin, eds., Proc. SPIE 963, 66–77 (1988).
  26. Y. Bitou and T. Minemoto, “High-contrast spatial light modulator by use of the electroabsorption and the electro-optic effects in a GaAs single crystal,” Appl. Opt. 37, 4347–4356 (1998).
  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Tokyo, 1980), pp. 66–70.
  28. K.-H. Hellwege and A. M. Hellwege, eds., Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Vol. 11 of Landolt Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, K.-H. Hellwege, editor in chief Springer-Verlag, Berlin, 1979, pp. 287–670.
  29. K. Takizawa and M. Okada, “Simple method for measuring electro-optic coefficients by detecting the interference signal between transmitted and reflected beams,” J. Opt. Soc. Am. 72, 809–811 (1982).
  30. K. Takizawa and M. Okada, “Determination of relative signs of electro-optic and piezoelectric coefficients by measuring optical phase shifts caused by an applied electric field,” J. Opt. Soc. Am. B 2, 289–293 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited