OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 1075–1081

Analytical modeling of Raman lidar return, including multiple scattering

Aleksey V. Malinka and Eleonora P. Zege  »View Author Affiliations

Applied Optics, Vol. 42, Issue 6, pp. 1075-1081 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical approach to modeling Raman lidar return with multiple scattering is presented. This approach is based on a small-angle quasi-single-scattering approximation developed earlier for elastic lidar sounding. An approximation of isotropic backscattering for the Raman-scattering case is proposed and tested. The computed results are presented and compared with known data. The approximation was found to be quite simple and provided a high accuracy of Raman lidar return calculations.

© 2003 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.5860) Scattering : Scattering, Raman

Original Manuscript: February 14, 2002
Revised Manuscript: October 7, 2002
Published: February 20, 2003

Aleksey V. Malinka and Eleonora P. Zege, "Analytical modeling of Raman lidar return, including multiple scattering," Appl. Opt. 42, 1075-1081 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  2. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 5, 1457–1465 (1996). [CrossRef]
  3. V. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  4. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999). [CrossRef]
  5. A. Ansmann, M. Reibesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  6. S. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  7. U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric-aerosol microphysical properties from independent extinction and backscattering measurements with Raman lidar,” Appl. Opt. 34, 8315–8329 (1995). [CrossRef] [PubMed]
  8. D. N. Klyshko, V. V. Fadeev, “Remote detecting the water impurity by means of laser spectroscopy calibrated by Raman scattering,” Rep. Acad. Sci. USSR 238, 320–323 (1978) (in Russian).
  9. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  10. J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000). [CrossRef]
  11. D. Whiteman, S. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. D 134, 31411–31419 (1999). [CrossRef]
  12. C. Grund, E. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991). [CrossRef]
  13. P. Piironen, E. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  14. A. Cohen, M. Kleiman, J. Cooney, “Lidar measurements of rotational Raman and double scattering,” Appl. Opt. 17, 1905–1910 (1978). [CrossRef] [PubMed]
  15. S. Egert, A. Cohen, M. Kleiman, N. Ben-Yosef, “Instantaneous integrated Raman scattering,” Appl. Opt. 22, 1592–1597 (1983). [CrossRef] [PubMed]
  16. P. Bruscaglioni, M. Gai, A. Ismaelli, “Molecular lidar and Mie multiple scattering,” in Proceedings of MUSCLE 10 (International Workshop on Multiple Scattering Lidar Experiments), Florence, Italy, 19–22 April 1999 (University of Florence, Florence, Italy, 1999), p. 206.
  17. J. Weinman, S. Shipley, “Effects of multiple scattering on laser pulses transmitted through clouds,” J. Geophys. Res. 77, 7123–7128 (1972). [CrossRef]
  18. U. Wandinger, “Multiple-scattering influence on extinction and backscatter-coefficient measurement with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  19. I. Katsev, E. Zege, A. Prikhach, I. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  20. E. Zege, I. Katsev, I. Polonsky, “Analytical solution to LIDAR return signals from clouds with regards to multiple scattering,” Appl. Phys. B 60, 345–354 (1995). [CrossRef]
  21. C. Mobley, B. Gentili, H. Gordon, Z. Jin, G. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7503 (1993). [CrossRef] [PubMed]
  22. G. Boynton, H. Gordon, “Irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: Raman-scattering effects,” Appl. Opt. 39, 3012–3022 (2000). [CrossRef]
  23. J. W. McLean, J. D. Freeman, R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998). [CrossRef]
  24. E. Zege, I. Katsev, A. Prikhach, G. Ludbrook, “Computer simulation with regard to pulse stretching for oceanic lidar return,” in Proceedings of the International Conference Current Problems in Optics of Natural Waters, St. Petersburg, Russia, 25–29 September 2001, (D. S. Rozhdestvensky Optical Society, St. Petersburg, Russia, 2001), p. 255.
  25. E. Eloranta, “Calculation of doubly scattered lidar returns,” Ph.D. dissertation (University of Wisconsin, Madison, Wisconsin, 1972).
  26. V. M. Orlov, I. V. Samohvalov, G. G. Matvienko, M. L. Belov, A. N. Kogevnikov, The Elements of Light Scattering Theory and Optical Sensing, (The Science, Novosibirsk, Russia1982) (in Russian).
  27. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969), p. 78.
  28. E. Zege, A. Ivanov, I. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Berlin, 1991), p. 85.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited