OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 1115–1121

Infrared 7.6-µm Lead-Salt Diode Laser Heterodyne Radiometry of Water Vapor in a CH4-Air Premixed Flat Flame

Damien Weidmann and Daniel Courtois  »View Author Affiliations


Applied Optics, Vol. 42, Issue 6, pp. 1115-1121 (2003)
http://dx.doi.org/10.1364/AO.42.001115


View Full Text Article

Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deal with the design of a diode laser heterodyne radiometer and its application in a combustion process. We present some experimental results obtained with a CH<sub>4</sub>-air premixed flat flame as the optical source. The goal is to prove that heterodyne detection techniques are relevant in remote detection and diagnostics of combustion and can have important applications in both civil and military fields. To the best of our knowledge, it is the first time that this demonstration is made. The radiometer, in spite of the low-power lead-salt diode laser used as a local oscillator, enables us to record high-temperature water-vapor emission spectra in the region of 1315 cm<sup>−1</sup>.

© 2003 Optical Society of America

OCIS Codes
(280.2470) Remote sensing and sensors : Flames
(280.3420) Remote sensing and sensors : Laser sensors
(300.2140) Spectroscopy : Emission
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Damien Weidmann and Daniel Courtois, "Infrared 7.6-µm Lead-Salt Diode Laser Heterodyne Radiometry of Water Vapor in a CH4-Air Premixed Flat Flame," Appl. Opt. 42, 1115-1121 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-6-1115


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. T. Menzies and M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
  2. S. R. King, D. T. Hodges, T. S. Hartwick, and D. H. Barker, “High resolution atmospheric transmission measurement using a laser heterodyne radiometer,” Appl. Opt. 12, 1106–1107 (1973).
  3. R. K. Seals and B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10–5, 1–6 (1976).
  4. C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, and A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
  5. S. L. Jain, “Laser heterodyne system for measurement of minor constituents in the atmosphere,” Indian J. Radio Space Phys. 25, 309–317 (1996).
  6. R. T. Menzies, “Remote detection of SO2 and CO2 with a heterodyne radiometer,” Appl. Phys. Lett. 22, 592–593 (1973).
  7. T. Kostiuk and M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22, 2644–2654 (1983).
  8. A. L. Betz, M. A. Johnson, R. A. McLaren, and E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
  9. J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11, 1619–1622 (1972).
  10. Y. Shani, A. Hardy, E. Kapon, and A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).
  11. M. Agne, A. Lambrecht, U. Schiessl, and M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
  12. M. A. Frerking and D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16, 526–528 (1977).
  13. J. M. Hoell, C. N. Harward, and W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
  14. D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, and M. J. Mumma, “Tunable diode laser heterodyne spectrometer for remote observation near 8 μm,” Appl. Opt. 21, 253–259 (1982).
  15. H. Fukunishi, S. Okano, M. Taguchi, and T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
  16. B. Parvitte, C. Thiébeaux, and D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).
  17. F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, and G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771–5776 (1998).
  18. O. Andrade and B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
  19. H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Vol. 8.
  20. L. Mandel, “Heterodyne detection of weak light beam,” J. Opt. Soc. Am. 56, 1200–1206 (1966).
  21. M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, and D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
  22. D. Courtois, C. Thiébaux, and A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
  23. C. Thiébaux, A. Delahaigue, D. Courtois, and J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
  24. T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
  25. R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), Chap. 7.
  26. S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975).
  27. C. N. Harward and B. D. Sidney, “Excess noise in Pb1-xSnxSe semiconductor lasers,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 129–142.
  28. F. Allario, S. J. Katzberg, and J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.
  29. D. Weidmann and D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
  30. K. Peterman, Laser Diode Modulation and Noise (Kluwer Academic, London, 1991).
  31. J. Reid, D. T. Cassidy, and R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
  32. R. Brunner and M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
  33. G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
  34. D. Weidmann, A. Hamdouni, and D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
  35. D. Courtois, A. Delahaigue, and C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
  36. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 54, 1350–1356 (1966).
  37. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  38. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
  39. G. Sonnabend, D. Wirtz, and R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited